Author: A. Davydov
Publisher: Springer
ISBN: 1489951695
Category : Science
Languages : en
Pages : 319
Book Description
Theory of Molecular Excitons
Author: A. Davydov
Publisher: Springer
ISBN: 1489951695
Category : Science
Languages : en
Pages : 319
Book Description
Publisher: Springer
ISBN: 1489951695
Category : Science
Languages : en
Pages : 319
Book Description
Dynamics of Molecular Excitons
Author: Seogjoo J. Jang
Publisher: Elsevier
ISBN: 0081023359
Category : Science
Languages : en
Pages : 242
Book Description
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes.
Publisher: Elsevier
ISBN: 0081023359
Category : Science
Languages : en
Pages : 242
Book Description
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes.
Excitation Energy Transfer Processes in Condensed Matter
Author: Jai Singh
Publisher: Springer Science & Business Media
ISBN: 1489909966
Category : Science
Languages : en
Pages : 276
Book Description
Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter. This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping.
Publisher: Springer Science & Business Media
ISBN: 1489909966
Category : Science
Languages : en
Pages : 276
Book Description
Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter. This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping.
Spectroscopy of the Excited State
Author: Baldassare Di Bartolo
Publisher: Springer Science & Business Media
ISBN: 1468427938
Category : Science
Languages : en
Pages : 423
Book Description
These proceedings report the lectures and seminars presented at the NATO Advanced Study Institute on "The Spectroscopy of the Excited State," held at Erice, Italy, June 9-24, 1975. This Institute was an activity of the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The Institute consisted of a series of lectures on the spectroscopic properties of materials in excited electronic states, that, starting at a fundamental level, finally reached the current level of research. The sequence of lectures and the organization of the material taught were in keeping with a didac tical presentation. In essence the course had the two-fold pur pose of organizing what was known on the subject, and updating the knowledge in the field. The formal lectures were complemented by seminars whose abstracts are also included in these proceedings. The proceedings report also the contributions sent by Professors R.G.W. Norrish and S. C1aesson who, unfortunately, were not able to come because of illness. A total of 62 participants and 7 lecturers came from the following countries: Belgium, Canada, Czechoslovakia, France, Germany, Israel, Italy, Japan, Netherlands, Norway, Pakistan, Poland, Sweden, Switzerland, the United Kingdom, the United States and Venezuela. The secretaries of the course were: A. La Francesca for the administrative aspects of the meeting and P.Papagiannakopou10s for the scientific aspects of the meeting.
Publisher: Springer Science & Business Media
ISBN: 1468427938
Category : Science
Languages : en
Pages : 423
Book Description
These proceedings report the lectures and seminars presented at the NATO Advanced Study Institute on "The Spectroscopy of the Excited State," held at Erice, Italy, June 9-24, 1975. This Institute was an activity of the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The Institute consisted of a series of lectures on the spectroscopic properties of materials in excited electronic states, that, starting at a fundamental level, finally reached the current level of research. The sequence of lectures and the organization of the material taught were in keeping with a didac tical presentation. In essence the course had the two-fold pur pose of organizing what was known on the subject, and updating the knowledge in the field. The formal lectures were complemented by seminars whose abstracts are also included in these proceedings. The proceedings report also the contributions sent by Professors R.G.W. Norrish and S. C1aesson who, unfortunately, were not able to come because of illness. A total of 62 participants and 7 lecturers came from the following countries: Belgium, Canada, Czechoslovakia, France, Germany, Israel, Italy, Japan, Netherlands, Norway, Pakistan, Poland, Sweden, Switzerland, the United Kingdom, the United States and Venezuela. The secretaries of the course were: A. La Francesca for the administrative aspects of the meeting and P.Papagiannakopou10s for the scientific aspects of the meeting.
Optical Properties of Materials and Their Applications
Author: Jai Singh
Publisher: John Wiley & Sons
ISBN: 111950631X
Category : Science
Languages : en
Pages : 667
Book Description
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.
Publisher: John Wiley & Sons
ISBN: 111950631X
Category : Science
Languages : en
Pages : 667
Book Description
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.
Molecular Excitation Dynamics and Relaxation
Author: Leonas Valkunas
Publisher: John Wiley & Sons
ISBN: 3527653678
Category : Science
Languages : en
Pages : 414
Book Description
This work brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire fi eld rather than just single aspects. Written by experienced authors and recognized authorities in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all fi nd this a must-have for their research. Also suitable as supplementary reading in graduate level courses.
Publisher: John Wiley & Sons
ISBN: 3527653678
Category : Science
Languages : en
Pages : 414
Book Description
This work brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire fi eld rather than just single aspects. Written by experienced authors and recognized authorities in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all fi nd this a must-have for their research. Also suitable as supplementary reading in graduate level courses.
Solid State Theory
Author: Walter A. Harrison
Publisher: Courier Corporation
ISBN: 0486152235
Category : Science
Languages : en
Pages : 580
Book Description
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
Publisher: Courier Corporation
ISBN: 0486152235
Category : Science
Languages : en
Pages : 580
Book Description
DIVThorough, modern study of solid state physics; solid types and symmetry, electron states, electronic properties and cooperative phenomena. /div
Dynamics of Molecular Excitons
Author: Seogjoo J. Jang
Publisher: Elsevier
ISBN: 0081023367
Category : Science
Languages : en
Pages : 244
Book Description
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes. - Covers major theories of exciton dynamics in a consciously concise and easily readable way - Bridges the gap between quantum dynamics working with phenomenological exciton Hamiltonian and quantum chemistry construct reliable models amenable for dynamics calculations from ab initio calculations - Explores modern nonlinear electronic spectroscopy techniques to probe exciton dynamics, showing how it is applied
Publisher: Elsevier
ISBN: 0081023367
Category : Science
Languages : en
Pages : 244
Book Description
Dynamics of Molecular Excitons provides a comprehensive, but concise description of major theories on the dynamics of molecular excitons, intended to serve as a self-contained resource on the topic. Designed to help those new to this area gain proficiency in this field, experts will also find the book useful in developing a deeper understanding of the subject. The starting point of the book is the standard microscopic definition of molecular Hamiltonians presented in commonly accepted modern quantum mechanical notations. Major assumptions and approximations involved in constructing Frenkel-type exciton Hamiltonians, which are well established, but are often hidden under arcane notations and approximations of old publications, are presented in detail. This will help quantum chemists understand the major assumptions involved in the definition of commonly used exciton models. Rate theories of exciton dynamics, such as Förster and Dexter theories and their modern generalizations, are presented in a unified and detailed manner. In addition, important aspects that are often neglected, such as local field effect and the role of fluctuating environments, are discussed. Various quantum dynamics methods allowing coherent dynamics of excitons are presented in a systematic manner in the context of quantum master equations or path integral formalisms. The author also provides a detailed theoretical explanation for the major spectroscopic techniques probing exciton dynamics, including modern two-dimensional electronic spectroscopy, with a critical assessment of the implications of these spectroscopic measurements. Finally, the book includes a brief overview of major applications including an explanation of organic photovoltaic materials and natural light harvesting complexes. - Covers major theories of exciton dynamics in a consciously concise and easily readable way - Bridges the gap between quantum dynamics working with phenomenological exciton Hamiltonian and quantum chemistry construct reliable models amenable for dynamics calculations from ab initio calculations - Explores modern nonlinear electronic spectroscopy techniques to probe exciton dynamics, showing how it is applied
Charge and Exciton Transport through Molecular Wires
Author: Laurens D. A. Siebbeles
Publisher: John Wiley & Sons
ISBN: 352763309X
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.
Publisher: John Wiley & Sons
ISBN: 352763309X
Category : Technology & Engineering
Languages : en
Pages : 293
Book Description
As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.
Charge and Energy Transfer Dynamics in Molecular Systems
Author: Volkhard May
Publisher: John Wiley & Sons
ISBN: 3527633812
Category : Science
Languages : en
Pages : 600
Book Description
This 3rd edition has been expanded and updated to account for recent developments, while new illustrative examples as well as an enlarged reference list have also been added. It naturally retains the successful concept of its predecessors in presenting a unified perspective on molecular charge and energy transfer processes, thus bridging the regimes of coherent and dissipative dynamics, and establishing a connection between classic rate theories and modern treatments of ultrafast phenomena. Among the new topics are: - Time-dependent density functional theory - Heterogeneous electron transfer, e.g. between molecules and metal or semiconductor surfaces - Current flows through a single molecule. While serving as an introduction for graduate students and researchers, this is equally must-have reading for theoreticians and experimentalists, as well as an aid to interpreting experimental data and accessing the original literature.
Publisher: John Wiley & Sons
ISBN: 3527633812
Category : Science
Languages : en
Pages : 600
Book Description
This 3rd edition has been expanded and updated to account for recent developments, while new illustrative examples as well as an enlarged reference list have also been added. It naturally retains the successful concept of its predecessors in presenting a unified perspective on molecular charge and energy transfer processes, thus bridging the regimes of coherent and dissipative dynamics, and establishing a connection between classic rate theories and modern treatments of ultrafast phenomena. Among the new topics are: - Time-dependent density functional theory - Heterogeneous electron transfer, e.g. between molecules and metal or semiconductor surfaces - Current flows through a single molecule. While serving as an introduction for graduate students and researchers, this is equally must-have reading for theoreticians and experimentalists, as well as an aid to interpreting experimental data and accessing the original literature.