The Theory of Matrices

The Theory of Matrices PDF Author: Peter Lancaster
Publisher: Academic Press
ISBN: 9780124355606
Category : Computers
Languages : en
Pages : 590

Get Book Here

Book Description
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.

The Theory of Matrices

The Theory of Matrices PDF Author: Peter Lancaster
Publisher: Academic Press
ISBN: 9780124355606
Category : Computers
Languages : en
Pages : 590

Get Book Here

Book Description
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.

Introduction to Matrices and Linear Transformations

Introduction to Matrices and Linear Transformations PDF Author: Daniel Talbot Finkbeiner
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 248

Get Book Here

Book Description


Matrix Theory

Matrix Theory PDF Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Matrices

Matrices PDF Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 038722758X
Category : Mathematics
Languages : en
Pages : 215

Get Book Here

Book Description
Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter

Matrix Theory

Matrix Theory PDF Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

A Survey of Matrix Theory and Matrix Inequalities

A Survey of Matrix Theory and Matrix Inequalities PDF Author: Marvin Marcus
Publisher: Courier Corporation
ISBN: 9780486671024
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.

Matrices

Matrices PDF Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 1441976833
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Matrix Theory: A Second Course

Matrix Theory: A Second Course PDF Author: James M. Ortega
Publisher: Springer Science & Business Media
ISBN: 9780306424335
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.

MATRIX OF THE UNIVERSE

MATRIX OF THE UNIVERSE PDF Author: AUDREY ELIZABETH RANDLES
Publisher: Audrey E Randles
ISBN:
Category : Science
Languages : en
Pages : 131

Get Book Here

Book Description
The theory of Matrix series of books offers the exiting developments in cosmological theory. ‘Matrix of the Universe’ is the 6th book of the series. In this book, we discuss the structure of the Universe, certain aspects of its evolution, energy, matter, space, and time. We combine elements of psychology, cosmology, and astrophysics to discover secrets hidden deep in the Universe. ‘Can we picture to ourselves a three-dimensional universe which is finite, yet unbounded? The usual answer to this question is “No,” but that is not the right answer.’ Albert Einstein ‘Geometry and Experience’ (1922) Stay well, and enjoy your reading. Yours sincerely, Audrey Elizabeth Randles DECEMBER 28, 2020

Matrix Algebra

Matrix Algebra PDF Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.