Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing PDF Author: Ya-Qiu Jin
Publisher: Springer Science & Business Media
ISBN: 9781402040290
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing presents some new progress on the theoretical and numerical approaches for information retrieval of the remote sensing via electromagnetic scattering and emission. It covers the vector radiative transfer theory for inhomogeneous scatter media, polarimetric scattering theory for the synthetic aperture radar (SAR) imagery and some innovative applications, new approach and data validation for current space-borne remote sensing programs, fast computational method and numerical simulation for bistatic scattering of randomly rough surface with a target presence, especially at low grazing angle. Some inverse problems in radiative transfer and inverse scattering are also discussed. Novel electromagnetics of complex media are also presented. Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing is intended as a textbook for graduate students and a reference book for scientists to see the most recent progress in the author’s research laboratory.

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing

Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing PDF Author: Ya-Qiu Jin
Publisher: Springer Science & Business Media
ISBN: 9781402040290
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing presents some new progress on the theoretical and numerical approaches for information retrieval of the remote sensing via electromagnetic scattering and emission. It covers the vector radiative transfer theory for inhomogeneous scatter media, polarimetric scattering theory for the synthetic aperture radar (SAR) imagery and some innovative applications, new approach and data validation for current space-borne remote sensing programs, fast computational method and numerical simulation for bistatic scattering of randomly rough surface with a target presence, especially at low grazing angle. Some inverse problems in radiative transfer and inverse scattering are also discussed. Novel electromagnetics of complex media are also presented. Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing is intended as a textbook for graduate students and a reference book for scientists to see the most recent progress in the author’s research laboratory.

Polarimetric Scattering and SAR Information Retrieval

Polarimetric Scattering and SAR Information Retrieval PDF Author: Ya-Qiu Jin
Publisher: John Wiley & Sons
ISBN: 1118188160
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative approaches for remote sensing, such as the analysis of the Mueller matrix solution of random media, mono-static and bistatic SAR image simulation. It also covers new parameters for unsupervised surface classification, DEM inversion, change detection from multi-temporal SAR images, reconstruction of building objects from multi-aspect SAR images, and polarimetric pulse echoes from multi-layering scatter media. Structured to encourage methodical learning, earlier chapters cover core material, whilst later sections involve more advanced new topics which are important for researchers. The final chapter completes the book as a reference by covering SAR interferometry, a core topic in the remote sensing community. Features theoretical scattering models and SAR data analysis techniques Explains the simulation of SAR images for mono- and bi-static radars, covering both qualitative and quantitative information retrieval Chapter topics include: theoretical scattering models; SAR data analysis and processing techniques; and theoretical quantitative simulation reconstruction and inversion techniques Structured to enable both academic learning and independent study, laying down the foundations first of all before advancing to more complex topics Experienced author team presents mathematical derivations and figures so that they are easy for readers to understand Pitched at graduate-level students in electrical engineering, physics, earth and space sciences, as well as researchers MATLAB code available for readers to run their own routines An invaluable reference for research scientists, engineers and scientists working on polarimetric SAR hardware and software, Application developers of SAR and polarimetric SAR, remote sensing specialists working with SAR data – using ESA.

Advances in Geoscience and Remote Sensing

Advances in Geoscience and Remote Sensing PDF Author: Gary Jedlovec
Publisher: BoD – Books on Demand
ISBN: 9533070056
Category : Technology & Engineering
Languages : en
Pages : 756

Get Book Here

Book Description
Remote sensing is the acquisition of information of an object or phenomenon, by the use of either recording or real-time sensing device(s), that is not in physical or intimate contact with the object (such as by way of aircraft, spacecraft, satellite, buoy, or ship). In practice, remote sensing is the stand-off collection through the use of a variety of devices for gathering information on a given object or area. Human existence is dependent on our ability to understand, utilize, manage and maintain the environment we live in - Geoscience is the science that seeks to achieve these goals. This book is a collection of contributions from world-class scientists, engineers and educators engaged in the fields of geoscience and remote sensing.

Remote Sensing of Turbulence

Remote Sensing of Turbulence PDF Author: Victor Raizer
Publisher: CRC Press
ISBN: 100045875X
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.

Understanding Earth Observation

Understanding Earth Observation PDF Author: Domenico Solimini
Publisher: Springer
ISBN: 3319256335
Category : Science
Languages : en
Pages : 728

Get Book Here

Book Description
This volume addresses the physical foundation of remote sensing. The basic grounds are presented in close association with the kinds of environmental targets to monitor and with the observing techniques. The book aims at plugging the quite large gap between the thorough and quantitative description of electromagnetic waves interacting with the Earth's environment and the user applications of Earth observation. It is intended for scientifically literate students and professionals who plan to gain a first understanding of remote sensing data and of their information content.

Moon

Moon PDF Author: Viorel Badescu
Publisher: Springer Science & Business Media
ISBN: 3642279694
Category : Technology & Engineering
Languages : en
Pages : 771

Get Book Here

Book Description
The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers.

Information Processing For Remote Sensing

Information Processing For Remote Sensing PDF Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814495352
Category : Technology & Engineering
Languages : en
Pages : 582

Get Book Here

Book Description
This book provides the most comprehensive study of information processing techniques and issues in remote sensing. Topics covered include image and signal processing, pattern recognition and feature extraction for remote sensing, neural networks and wavelet transforms in remote sensing, remote sensing of ocean and coastal environment, SAR image filtering and segmentation, knowledge-based systems, software and hardware issues, data compression, change detection, etc. Emphasis is placed on environmental issues of remote sensing.With 58 color illustrations.

Introduction to the Physics and Techniques of Remote Sensing

Introduction to the Physics and Techniques of Remote Sensing PDF Author: Charles Elachi
Publisher: John Wiley & Sons
ISBN: 0471783382
Category : Technology & Engineering
Languages : en
Pages : 572

Get Book Here

Book Description
The science and engineering of remote sensing--theory and applications The Second Edition of this authoritative book offers readers the essential science and engineering foundation needed to understand remote sensing and apply it in real-world situations. Thoroughly updated to reflect the tremendous technological leaps made since the publication of the first edition, this book covers the gamut of knowledge and skills needed to work in this dynamic field, including: * Physics involved in wave-matter interaction, the building blocks for interpreting data * Techniques used to collect data * Remote sensing applications The authors have carefully structured and organized the book to introduce readers to the basics, and then move on to more advanced applications. Following an introduction, Chapter 2 sets forth the basic properties of electromagnetic waves and their interactions with matter. Chapters 3 through 7 cover the use of remote sensing in solid surface studies, including oceans. Each chapter covers one major part of the electromagnetic spectrum (e.g., visible/near infrared, thermal infrared, passive microwave, and active microwave). Chapters 8 through 12 then cover remote sensing in the study of atmospheres and ionospheres. Each chapter first presents the basic interaction mechanism, followed by techniques to acquire, measure, and study the information, or waves, emanating from the medium under investigation. In most cases, a specific advanced sensor is used for illustration. The book is generously illustrated with fifty percent new figures. Numerous illustrations are reproduced in a separate section of color plates. Examples of data acquired from spaceborne sensors are included throughout. Finally, a set of exercises, along with a solutions manual, is provided. This book is based on an upper-level undergraduate and first-year graduate course taught by the authors at the California Institute of Technology. Because of the multidisciplinary nature of the field and its applications, it is appropriate for students in electrical engineering, applied physics, geology, planetary science, astronomy, and aeronautics. It is also recommended for any engineer or scientist interested in working in this exciting field.

Mathematics Applied in Information Systems

Mathematics Applied in Information Systems PDF Author: Mangey Ram
Publisher: Bentham Science Publishers
ISBN: 1681087138
Category : Computers
Languages : en
Pages : 299

Get Book Here

Book Description
Recent developments in information science and technology have been possible due to original and timely research contributions containing new results in various fields of applied mathematics. It is also true that advances in information science create opportunities for developing mathematical models further.

Light Scattering by Nonspherical Particles

Light Scattering by Nonspherical Particles PDF Author: Michael I. Mishchenko
Publisher: Elsevier
ISBN: 0080510205
Category : Science
Languages : en
Pages : 721

Get Book Here

Book Description
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid particles encountered in natural and laboratory conditions have nonspherical shapes. Examples are soot and mineral aerosols, cirrus cloud particles, snow and frost crystals, ocean hydrosols, interplanetary and cometary dust grains, and microorganisms. It is now well known that scattering properties of nonspherical particles can differ dramatically from those of "equivalent" (e.g., equal-volume or equal-surface-area) spheres. Therefore, the ability to accurately compute or measure light scattering by nonspherical particles in order to clearly understand the effects of particle nonsphericity on light scattering is very important. The rapid improvement of computers and experimental techniques over the past 20 years and the development of efficient numerical approaches have resulted in major advances in this field which have not been systematically summarized. Because of the universal importance of electromagnetic scattering by nonspherical particles, papers on different aspects of this subject are scattered over dozens of diverse research and engineering journals. Often experts in one discipline (e.g., biology) are unaware of potentially useful results obtained in another discipline (e.g., antennas and propagation). This leads to an inefficient use of the accumulated knowledge and unnecessary redundancy in research activities. This book offers the first systematic and unified discussion of light scattering by nonspherical particles and its practical applications and represents the state-of-the-art of this important research field. Individual chapters are written by leading experts in respective areas and cover three major disciplines: theoretical and numerical techniques, laboratory measurements, and practical applications. An overview chapter provides a concise general introduction to the subject of nonspherical scattering and should be especially useful to beginners and those interested in fast practical applications. The audience for this book will include graduate students, scientists, and engineers working on specific aspects of electromagnetic scattering by small particles and its applications in remote sensing, geophysics, astrophysics, biomedical optics, and optical engineering. - The first systematic and comprehensive treatment of electromagnetic scattering by nonspherical particles and its applications - Individual chapters are written by leading experts in respective areas - Includes a survey of all the relevant literature scattered over dozens of basic and applied research journals - Consistent use of unified definitions and notation makes the book a coherent volume - An overview chapter provides a concise general introduction to the subject of light scattering by nonspherical particles - Theoretical chapters describe specific easy-to-use computer codes publicly available on the World Wide Web - Extensively illustrated with over 200 figures, 4 in color