Author: Robert S. Strichartz
Publisher: Jones & Bartlett Learning
ISBN: 9780763714970
Category : Computers
Languages : en
Pages : 764
Book Description
The Way of Analysis gives a thorough account of real analysis in one or several variables, from the construction of the real number system to an introduction of the Lebesgue integral. The text provides proofs of all main results, as well as motivations, examples, applications, exercises, and formal chapter summaries. Additionally, there are three chapters on application of analysis, ordinary differential equations, Fourier series, and curves and surfaces to show how the techniques of analysis are used in concrete settings.
The Way of Analysis
Author: Robert S. Strichartz
Publisher: Jones & Bartlett Learning
ISBN: 9780763714970
Category : Computers
Languages : en
Pages : 764
Book Description
The Way of Analysis gives a thorough account of real analysis in one or several variables, from the construction of the real number system to an introduction of the Lebesgue integral. The text provides proofs of all main results, as well as motivations, examples, applications, exercises, and formal chapter summaries. Additionally, there are three chapters on application of analysis, ordinary differential equations, Fourier series, and curves and surfaces to show how the techniques of analysis are used in concrete settings.
Publisher: Jones & Bartlett Learning
ISBN: 9780763714970
Category : Computers
Languages : en
Pages : 764
Book Description
The Way of Analysis gives a thorough account of real analysis in one or several variables, from the construction of the real number system to an introduction of the Lebesgue integral. The text provides proofs of all main results, as well as motivations, examples, applications, exercises, and formal chapter summaries. Additionally, there are three chapters on application of analysis, ordinary differential equations, Fourier series, and curves and surfaces to show how the techniques of analysis are used in concrete settings.
The Way of Analysis
Author: Robert S. Strichartz
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages :
Book Description
Understanding Analysis
Author: Stephen Abbott
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Publisher: Springer Science & Business Media
ISBN: 0387215069
Category : Mathematics
Languages : en
Pages : 269
Book Description
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.
Mathematical Analysis I
Author: Vladimir A. Zorich
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Foundations of Analysis
Author: Edmund Landau
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142
Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.
The Real Analysis Lifesaver
Author: Raffi Grinberg
Publisher: Princeton University Press
ISBN: 0691172935
Category : Mathematics
Languages : en
Pages : 200
Book Description
The essential "lifesaver" that every student of real analysis needs Real analysis is difficult. For most students, in addition to learning new material about real numbers, topology, and sequences, they are also learning to read and write rigorous proofs for the first time. The Real Analysis Lifesaver is an innovative guide that helps students through their first real analysis course while giving them the solid foundation they need for further study in proof-based math. Rather than presenting polished proofs with no explanation of how they were devised, The Real Analysis Lifesaver takes a two-step approach, first showing students how to work backwards to solve the crux of the problem, then showing them how to write it up formally. It takes the time to provide plenty of examples as well as guided "fill in the blanks" exercises to solidify understanding. Newcomers to real analysis can feel like they are drowning in new symbols, concepts, and an entirely new way of thinking about math. Inspired by the popular Calculus Lifesaver, this book is refreshingly straightforward and full of clear explanations, pictures, and humor. It is the lifesaver that every drowning student needs. The essential “lifesaver” companion for any course in real analysis Clear, humorous, and easy-to-read style Teaches students not just what the proofs are, but how to do them—in more than 40 worked-out examples Every new definition is accompanied by examples and important clarifications Features more than 20 “fill in the blanks” exercises to help internalize proof techniques Tried and tested in the classroom
Publisher: Princeton University Press
ISBN: 0691172935
Category : Mathematics
Languages : en
Pages : 200
Book Description
The essential "lifesaver" that every student of real analysis needs Real analysis is difficult. For most students, in addition to learning new material about real numbers, topology, and sequences, they are also learning to read and write rigorous proofs for the first time. The Real Analysis Lifesaver is an innovative guide that helps students through their first real analysis course while giving them the solid foundation they need for further study in proof-based math. Rather than presenting polished proofs with no explanation of how they were devised, The Real Analysis Lifesaver takes a two-step approach, first showing students how to work backwards to solve the crux of the problem, then showing them how to write it up formally. It takes the time to provide plenty of examples as well as guided "fill in the blanks" exercises to solidify understanding. Newcomers to real analysis can feel like they are drowning in new symbols, concepts, and an entirely new way of thinking about math. Inspired by the popular Calculus Lifesaver, this book is refreshingly straightforward and full of clear explanations, pictures, and humor. It is the lifesaver that every drowning student needs. The essential “lifesaver” companion for any course in real analysis Clear, humorous, and easy-to-read style Teaches students not just what the proofs are, but how to do them—in more than 40 worked-out examples Every new definition is accompanied by examples and important clarifications Features more than 20 “fill in the blanks” exercises to help internalize proof techniques Tried and tested in the classroom
Foundations of Analysis
Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411
Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411
Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
A First Course in Real Analysis
Author: Sterling K. Berberian
Publisher: Springer Science & Business Media
ISBN: 1441985484
Category : Mathematics
Languages : en
Pages : 249
Book Description
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
Publisher: Springer Science & Business Media
ISBN: 1441985484
Category : Mathematics
Languages : en
Pages : 249
Book Description
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
Real Mathematical Analysis
Author: Charles Chapman Pugh
Publisher: Springer Science & Business Media
ISBN: 0387216847
Category : Mathematics
Languages : en
Pages : 445
Book Description
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Publisher: Springer Science & Business Media
ISBN: 0387216847
Category : Mathematics
Languages : en
Pages : 445
Book Description
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
A Guide to Distribution Theory and Fourier Transforms
Author: Robert S. Strichartz
Publisher: World Scientific
ISBN: 9789812384300
Category : Mathematics
Languages : en
Pages : 238
Book Description
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.
Publisher: World Scientific
ISBN: 9789812384300
Category : Mathematics
Languages : en
Pages : 238
Book Description
This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.