Introduction to the Theory of Equations

Introduction to the Theory of Equations PDF Author: Nelson Bush Conkwright
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description

Introduction to the Theory of Equations

Introduction to the Theory of Equations PDF Author: Nelson Bush Conkwright
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description


Algebraic Equations

Algebraic Equations PDF Author: Edgar Dehn
Publisher: Courier Corporation
ISBN: 0486155102
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.

Nonlinear Potential Theory of Degenerate Elliptic Equations

Nonlinear Potential Theory of Degenerate Elliptic Equations PDF Author: Juha Heinonen
Publisher: Courier Corporation
ISBN: 0486149250
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.

General Theory of Algebraic Equations

General Theory of Algebraic Equations PDF Author: Etienne Bézout
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.

Equations and Inequalities

Equations and Inequalities PDF Author: Jiri Herman
Publisher: Springer Science & Business Media
ISBN: 1461212707
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.

Theory of Stochastic Canonical Equations

Theory of Stochastic Canonical Equations PDF Author: Vi︠a︡cheslav Leonidovich Girko
Publisher: Springer Science & Business Media
ISBN: 9781402000744
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description


Applied Theory of Functional Differential Equations

Applied Theory of Functional Differential Equations PDF Author: V. Kolmanovskii
Publisher: Springer Science & Business Media
ISBN: 9401580847
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.

Ordinary Differential Equations and Stability Theory:

Ordinary Differential Equations and Stability Theory: PDF Author: David A. Sanchez
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations PDF Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 9783540442288
Category : Mathematics
Languages : en
Pages : 46

Get Book Here

Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

The Classical Theory of Integral Equations

The Classical Theory of Integral Equations PDF Author: Stephen M. Zemyan
Publisher: Springer Science & Business Media
ISBN: 0817683496
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.