Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions PDF Author: Philip G. Burke
Publisher: Springer Science & Business Media
ISBN: 1489915672
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.

Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions PDF Author: Philip G. Burke
Publisher: Springer Science & Business Media
ISBN: 1489915672
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules PDF Author: S.P. Khare
Publisher: Springer Science & Business Media
ISBN: 1461506115
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.

Collisions of Electrons with Atoms and Molecules

Collisions of Electrons with Atoms and Molecules PDF Author: G.F. Drukarev
Publisher: Springer Science & Business Media
ISBN: 1461317797
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.

Electron–Atom Collisions

Electron–Atom Collisions PDF Author: Maurizio Dapor
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110675374
Category : Science
Languages : en
Pages : 194

Get Book Here

Book Description
Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering in a quantum-relativistic framework.

The Theory of Electron-atom Collisions

The Theory of Electron-atom Collisions PDF Author: Grigoriĭ Filippovich Drukarev
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description


The Theory of Atomic Collisions

The Theory of Atomic Collisions PDF Author: Sir Nevill Francis Mott
Publisher: Oxford University Press, USA
ISBN:
Category : Art
Languages : en
Pages : 372

Get Book Here

Book Description
This is the first paperback edition of a classic, enduring work. Volume I describes various aspects of the one-body collision problem. Volume II covers many-body problems and applications of theory to electron collisions with atoms, collisions between atomic systems, nuclear collisions, and two-body collisions under relativistic conditions. The use of time-dependent perturbation theory is also discussed.

Electron-Atom and Electron-Molecule Collisions

Electron-Atom and Electron-Molecule Collisions PDF Author: Jürgen Hinze
Publisher: Springer Science & Business Media
ISBN: 1489921486
Category : Science
Languages : en
Pages : 353

Get Book Here

Book Description
The papers collected in this volume have been presented during a workshop on "Electron-Atom and Molecule Collisions" held at the Centre for Interdisciplinary Studies of the University of Bielefeld in May 1980. This workshop, part of a larger program concerned with the "Properties and Reactions of Isolated Molecules and Atoms," focused on the theory and computational techniques for the quanti tative description of electron scattering phenomena. With the advances which have been made in the accurate quantum mechanical characterisation of bound states of atoms and molecules, the more complicated description of the unbound systems and resonances important in electron collision processes has matured too. As expli cated in detail in the articles of this volume, the theory for the quantitative explanation of elastic and inelastic electron molecule collisions, of photo- and multiple photon ionization and even for electron impact ionization is well developed in a form which lends itself to a complete quantitative ab initio interpretation and pre diction of the observable effects. Many of the experiences gained and the techniques which have evolved over the years in the com putational characterization of bound states have become an essential basis for this development. To be sure, much needs to be done before we have a complete and detailed theoretical understanding of the known collisional processes and of the phenomena and effects, which may still be un covered with the continuing refinement of the experimental tech niques.

Computational Methods for Electron—Molecule Collisions

Computational Methods for Electron—Molecule Collisions PDF Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
ISBN: 1475797974
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.

Theory of Electron-atom Collisions

Theory of Electron-atom Collisions PDF Author: Charles J. Joachain
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Polarization and Correlation Phenomena in Atomic Collisions

Polarization and Correlation Phenomena in Atomic Collisions PDF Author: Vsevolod V. Balashov
Publisher: Springer Science & Business Media
ISBN: 9780306462665
Category : Science
Languages : en
Pages : 258

Get Book Here

Book Description
"The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".