Author: D.L. McLeish
Publisher: Springer Science & Business Media
ISBN: 1461238722
Category : Mathematics
Languages : en
Pages : 131
Book Description
This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise com monly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and complete ness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for infer ence without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests.
The Theory and Applications of Statistical Interference Functions
Author: D.L. McLeish
Publisher: Springer Science & Business Media
ISBN: 1461238722
Category : Mathematics
Languages : en
Pages : 131
Book Description
This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise com monly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and complete ness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for infer ence without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests.
Publisher: Springer Science & Business Media
ISBN: 1461238722
Category : Mathematics
Languages : en
Pages : 131
Book Description
This monograph arose out of a desire to develop an approach to statistical infer ence that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise com monly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and complete ness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for infer ence without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests.
Models for Probability and Statistical Inference
Author: James H. Stapleton
Publisher: John Wiley & Sons
ISBN: 0470183403
Category : Mathematics
Languages : en
Pages : 466
Book Description
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Publisher: John Wiley & Sons
ISBN: 0470183403
Category : Mathematics
Languages : en
Pages : 466
Book Description
This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers.
Theory of Statistical Inference
Author: Anthony Almudevar
Publisher: CRC Press
ISBN: 1000488071
Category : Mathematics
Languages : en
Pages : 1059
Book Description
Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role. The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test. Features This volume includes treatment of linear and nonlinear regression models, ANOVA models, generalized linear models (GLM) and generalized estimating equations (GEE). An introduction to decision theory (including risk, admissibility, classification, Bayes and minimax decision rules) is presented. The importance of this sometimes overlooked topic to statistical methodology is emphasized. The volume emphasizes throughout the important role that can be played by group theory and invariance in statistical inference. Nonparametric (rank-based) methods are derived by the same principles used for parametric models and are therefore presented as solutions to well-defined mathematical problems, rather than as robust heuristic alternatives to parametric methods. Each chapter ends with a set of theoretical and applied exercises integrated with the main text. Problems involving R programming are included. Appendices summarize the necessary background in analysis, matrix algebra and group theory.
Publisher: CRC Press
ISBN: 1000488071
Category : Mathematics
Languages : en
Pages : 1059
Book Description
Theory of Statistical Inference is designed as a reference on statistical inference for researchers and students at the graduate or advanced undergraduate level. It presents a unified treatment of the foundational ideas of modern statistical inference, and would be suitable for a core course in a graduate program in statistics or biostatistics. The emphasis is on the application of mathematical theory to the problem of inference, leading to an optimization theory allowing the choice of those statistical methods yielding the most efficient use of data. The book shows how a small number of key concepts, such as sufficiency, invariance, stochastic ordering, decision theory and vector space algebra play a recurring and unifying role. The volume can be divided into four sections. Part I provides a review of the required distribution theory. Part II introduces the problem of statistical inference. This includes the definitions of the exponential family, invariant and Bayesian models. Basic concepts of estimation, confidence intervals and hypothesis testing are introduced here. Part III constitutes the core of the volume, presenting a formal theory of statistical inference. Beginning with decision theory, this section then covers uniformly minimum variance unbiased (UMVU) estimation, minimum risk equivariant (MRE) estimation and the Neyman-Pearson test. Finally, Part IV introduces large sample theory. This section begins with stochastic limit theorems, the δ-method, the Bahadur representation theorem for sample quantiles, large sample U-estimation, the Cramér-Rao lower bound and asymptotic efficiency. A separate chapter is then devoted to estimating equation methods. The volume ends with a detailed development of large sample hypothesis testing, based on the likelihood ratio test (LRT), Rao score test and the Wald test. Features This volume includes treatment of linear and nonlinear regression models, ANOVA models, generalized linear models (GLM) and generalized estimating equations (GEE). An introduction to decision theory (including risk, admissibility, classification, Bayes and minimax decision rules) is presented. The importance of this sometimes overlooked topic to statistical methodology is emphasized. The volume emphasizes throughout the important role that can be played by group theory and invariance in statistical inference. Nonparametric (rank-based) methods are derived by the same principles used for parametric models and are therefore presented as solutions to well-defined mathematical problems, rather than as robust heuristic alternatives to parametric methods. Each chapter ends with a set of theoretical and applied exercises integrated with the main text. Problems involving R programming are included. Appendices summarize the necessary background in analysis, matrix algebra and group theory.
Introduction to the Theory of Statistical Inference
Author: Hannelore Liero
Publisher: CRC Press
ISBN: 1466503203
Category : Mathematics
Languages : en
Pages : 280
Book Description
Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.
Publisher: CRC Press
ISBN: 1466503203
Category : Mathematics
Languages : en
Pages : 280
Book Description
Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.
Hilbert Space Methods in Probability and Statistical Inference
Author: Christopher G. Small
Publisher: John Wiley & Sons
ISBN: 1118165535
Category : Mathematics
Languages : en
Pages : 268
Book Description
Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.
Publisher: John Wiley & Sons
ISBN: 1118165535
Category : Mathematics
Languages : en
Pages : 268
Book Description
Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.
Belief Functions: Theory and Applications
Author: Fabio Cuzzolin
Publisher: Springer
ISBN: 3319111914
Category : Computers
Languages : en
Pages : 460
Book Description
This book constitutes the thoroughly refereed proceedings of the Third International Conference on Belief Functions, BELIEF 2014, held in Oxford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geometry.
Publisher: Springer
ISBN: 3319111914
Category : Computers
Languages : en
Pages : 460
Book Description
This book constitutes the thoroughly refereed proceedings of the Third International Conference on Belief Functions, BELIEF 2014, held in Oxford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geometry.
Applied Statistical Inference
Author: Leonhard Held
Publisher: Springer Science & Business Media
ISBN: 3642378870
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.
Publisher: Springer Science & Business Media
ISBN: 3642378870
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.
Belief Functions: Theory and Applications
Author: Yaxin Bi
Publisher: Springer Nature
ISBN: 3031679776
Category :
Languages : en
Pages : 300
Book Description
Publisher: Springer Nature
ISBN: 3031679776
Category :
Languages : en
Pages : 300
Book Description
Statistical Inference from Stochastic Processes
Author: Narahari Umanath Prabhu
Publisher: American Mathematical Soc.
ISBN: 0821850873
Category : Mathematics
Languages : en
Pages : 406
Book Description
Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.
Publisher: American Mathematical Soc.
ISBN: 0821850873
Category : Mathematics
Languages : en
Pages : 406
Book Description
Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.
Statistical Inference Via Convex Optimization
Author: Anatoli Juditsky
Publisher: Princeton University Press
ISBN: 0691197296
Category : Mathematics
Languages : en
Pages : 655
Book Description
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Publisher: Princeton University Press
ISBN: 0691197296
Category : Mathematics
Languages : en
Pages : 655
Book Description
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.