Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821822713
Category : Mathematics
Languages : en
Pages : 181
Book Description
This paper is the second of three which investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper the d3-differentials are computed by Landweber-Novikov and Massey product methods. In addition cup-one products are introduced in the theory of bordism chains, and a complex is constructed to represent an Adams spectral sequence.
The Symplectic Cobordism Ring II
Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821822713
Category : Mathematics
Languages : en
Pages : 181
Book Description
This paper is the second of three which investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper the d3-differentials are computed by Landweber-Novikov and Massey product methods. In addition cup-one products are introduced in the theory of bordism chains, and a complex is constructed to represent an Adams spectral sequence.
Publisher: American Mathematical Soc.
ISBN: 0821822713
Category : Mathematics
Languages : en
Pages : 181
Book Description
This paper is the second of three which investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper the d3-differentials are computed by Landweber-Novikov and Massey product methods. In addition cup-one products are introduced in the theory of bordism chains, and a complex is constructed to represent an Adams spectral sequence.
The Symplectic Cobordism Ring. I
Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821822284
Category : Mathematics
Languages : en
Pages : 220
Book Description
This paper is the first of three which will investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper, [italic]E2 us computed as an algebra by the May spectral sequence. The [italic]d2 differentials in the Adams spectral sequence are then found by Landweber-Novikov and matric Massey product methods. Algebra generators of [italic]E3 are then determined.
Publisher: American Mathematical Soc.
ISBN: 0821822284
Category : Mathematics
Languages : en
Pages : 220
Book Description
This paper is the first of three which will investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper, [italic]E2 us computed as an algebra by the May spectral sequence. The [italic]d2 differentials in the Adams spectral sequence are then found by Landweber-Novikov and matric Massey product methods. Algebra generators of [italic]E3 are then determined.
Symplectic Cobordism and the Computation of Stable Stems
Author: Stanley O. Kochman
Publisher: American Mathematical Soc.
ISBN: 0821825585
Category : Mathematics
Languages : en
Pages : 105
Book Description
This memoir consists of two independent papers. In the first, "The symplectic cobordism ring III" the classical Adams spectral sequence is used to study the symplectic cobordism ring [capital Greek]Omega[superscript]* [over] [subscript italic capital]S[subscript italic]p. In the second, "The symplectic Adams Novikov spectral sequence for spheres" we analyze the symplectic Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres.
Publisher: American Mathematical Soc.
ISBN: 0821825585
Category : Mathematics
Languages : en
Pages : 105
Book Description
This memoir consists of two independent papers. In the first, "The symplectic cobordism ring III" the classical Adams spectral sequence is used to study the symplectic cobordism ring [capital Greek]Omega[superscript]* [over] [subscript italic capital]S[subscript italic]p. In the second, "The symplectic Adams Novikov spectral sequence for spheres" we analyze the symplectic Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres.
Normal Structures and Bordism Theory, with Applications to $MSp_\ast $
Author: Nigel Ray
Publisher: American Mathematical Soc.
ISBN: 0821821938
Category : Mathematics
Languages : en
Pages : 80
Book Description
In the first of these three papers we discuss the problem of enumerating the bordism classes which can be carried on a fixed manifold by means of varying its normal structure. The main application is to Sp structures on Alexander's family of manifolds, and is presented in the third paper. The middle paper collects together the requisite definitions and calculations.
Publisher: American Mathematical Soc.
ISBN: 0821821938
Category : Mathematics
Languages : en
Pages : 80
Book Description
In the first of these three papers we discuss the problem of enumerating the bordism classes which can be carried on a fixed manifold by means of varying its normal structure. The main application is to Sp structures on Alexander's family of manifolds, and is presented in the third paper. The middle paper collects together the requisite definitions and calculations.
Canadian Journal of Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 228
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 228
Book Description
Canadian Mathematical Bulletin
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 128
Book Description
Algebraic Topology. Waterloo 1978
Author: P. Hoffman
Publisher: Springer
ISBN: 3540350098
Category : Mathematics
Languages : en
Pages : 668
Book Description
Publisher: Springer
ISBN: 3540350098
Category : Mathematics
Languages : en
Pages : 668
Book Description
Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Society
ISBN: 1470472937
Category : Mathematics
Languages : en
Pages : 417
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Publisher: American Mathematical Society
ISBN: 1470472937
Category : Mathematics
Languages : en
Pages : 417
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Algebraic Topology: Oaxtepec 1991
Author: Martin C. Tangora
Publisher: American Mathematical Soc.
ISBN: 0821851624
Category : Mathematics
Languages : en
Pages : 504
Book Description
This book consists of twenty-nine articles contributed by participants of the International Conference in Algebraic Topology held in July 1991 in Mexico. In addition to papers on current research, there are several surveys and expositions on the work of Mark Mahowald, whose sixtieth birthday was celebrated during the conference. The conference was truly international, with over 130 mathematicians from fifteen countries. It ended with a spectacular total eclipse of the sun, a photograph of which appears as the frontispiece. The papers range over much of algebraic topology and cross over into related areas, such as K theory, representation theory, and Lie groups. Also included is a chart of the Adams spectral sequence and a bibliography of Mahowald's publications.
Publisher: American Mathematical Soc.
ISBN: 0821851624
Category : Mathematics
Languages : en
Pages : 504
Book Description
This book consists of twenty-nine articles contributed by participants of the International Conference in Algebraic Topology held in July 1991 in Mexico. In addition to papers on current research, there are several surveys and expositions on the work of Mark Mahowald, whose sixtieth birthday was celebrated during the conference. The conference was truly international, with over 130 mathematicians from fifteen countries. It ended with a spectacular total eclipse of the sun, a photograph of which appears as the frontispiece. The papers range over much of algebraic topology and cross over into related areas, such as K theory, representation theory, and Lie groups. Also included is a chart of the Adams spectral sequence and a bibliography of Mahowald's publications.
Canadian Mathematical Bulletin
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 128
Book Description