The Sub-Laplacian Operators of Some Model Domains

The Sub-Laplacian Operators of Some Model Domains PDF Author: Der-Chen Chang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110642999
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
The book studies sub-Laplacian operators on a family of model domains in C^{n+1}, which is a good point-wise model for a $CR$ manifold with non-degenerate Levi form. A considerable amount of study has been devoted to partial differential operators constructed from non-commuting vector fields, in which the non-commutativity plays an essential role in determining the regularity properties of the operators.

The Sub-Laplacian Operators of Some Model Domains

The Sub-Laplacian Operators of Some Model Domains PDF Author: Der-Chen Chang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110642999
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
The book studies sub-Laplacian operators on a family of model domains in C^{n+1}, which is a good point-wise model for a $CR$ manifold with non-degenerate Levi form. A considerable amount of study has been devoted to partial differential operators constructed from non-commuting vector fields, in which the non-commutativity plays an essential role in determining the regularity properties of the operators.

The Sub-Laplacian Operators of Some Model Domains

The Sub-Laplacian Operators of Some Model Domains PDF Author: Der-Chen Chang
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110643170
Category : Mathematics
Languages : en
Pages : 199

Get Book Here

Book Description
The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker’s equations.

Eigenfunctions of the Laplacian on a Riemannian Manifold

Eigenfunctions of the Laplacian on a Riemannian Manifold PDF Author: Steve Zelditch
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

The Invariance of the Wave Operators for the Laplacian in an Exterior Domain

The Invariance of the Wave Operators for the Laplacian in an Exterior Domain PDF Author: Norman Alexander Shenk
Publisher:
ISBN:
Category : Calculus, Operational
Languages : en
Pages : 38

Get Book Here

Book Description


Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds

Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds PDF Author: Dorina Mitrea
Publisher: American Mathematical Soc.
ISBN: 082182659X
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
The general aim of the present monograph is to study boundary-value problems for second-order elliptic operators in Lipschitz sub domains of Riemannian manifolds. In the first part (ss1-4), we develop a theory for Cauchy type operators on Lipschitz submanifolds of co dimension one (focused on boundedness properties and jump relations) and solve the $Lp$-Dirichlet problem, with $p$ close to $2$, for general second-order strongly elliptic systems. The solution is represented in the form of layer potentials and optimal non tangential maximal function estimates are established.This analysis is carried out under smoothness assumptions (for the coefficients of the operator, metric tensor and the underlying domain) which are in the nature of best possible. In the second part of the monograph, ss5-13, we further specialize this discussion to the case of Hodge Laplacian $\Delta: =-d\delta-\delta d$. This time, the goal is to identify all (pairs of) natural boundary conditions of Neumann type. Owing to the structural richness of the higher degree case we are considering, the theory developed here encompasses in a unitary fashion many basic PDE's of mathematical physics. Its scope extends to also cover Maxwell's equations, dealt with separately in s14. The main tools are those of PDE's and harmonic analysis, occasionally supplemented with some basic facts from algebraic topology and differential geometry.

Geometry of the Laplace Operator

Geometry of the Laplace Operator PDF Author: Robert Osserman
Publisher: American Mathematical Soc.
ISBN: 9780821867969
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description


The Hodge-Laplacian

The Hodge-Laplacian PDF Author: Dorina Mitrea
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110484382
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents: Preface Introduction and Statement of Main Results Geometric Concepts and Tools Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism Additional Results and Applications Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis Bibliography Index

Geometric Potential Analysis

Geometric Potential Analysis PDF Author: Mario Milman
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311074189X
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.

Fractional Calculus

Fractional Calculus PDF Author: Praveen Agarwal
Publisher: Springer Nature
ISBN: 981150430X
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
This book collects papers presented at the International Conference on Fractional Differentiation and its Applications (ICFDA), held at the University of Jordan, Amman, Jordan, on 16–18 July 2018. Organized into 13 chapters, the book discusses the latest trends in various fields of theoretical and applied fractional calculus. Besides an essential mathematical interest, its overall goal is a general improvement of the physical world models for the purpose of computer simulation, analysis, design and control in practical applications. It showcases the development of fractional calculus as an acceptable tool for a large number of diverse scientific communities due to more adequate modeling in various fields of mechanics, electricity, chemistry, biology, medicine, economics, control theory, as well as signal and image processing. The book will be a valuable resource for graduate students and researchers of mathematics and engineering.

Three-dimensional Finite-element Time-domain Modeling of the Marine Controlled-source Electromagnetic Method

Three-dimensional Finite-element Time-domain Modeling of the Marine Controlled-source Electromagnetic Method PDF Author: Evan Schankee Um
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 207

Get Book Here

Book Description
The survey design and data interpretation of the marine controlled-source electromagnetic (CSEM) method require modeling of complex and often subtle offshore geology with accuracy and efficiency. In this dissertation, I develop two efficient finite-element time-domain (FETD) algorithms for the simulation of three-dimensional (3D) electromagnetic (EM) diffusion phenomena. The two FETD algorithms are used to investigate the time-domain CSEM (TDCSEM) method in realistic shallow offshore environments and the effects of seafloor topography and seabed anisotropy on the TDCSEM method. The first FETD algorithm directly solves electric fields by applying the Galerkin method to the electric-field diffusion equation. The time derivatives of the magnetic fields are interpolated at receiver positions via Faraday's law only when the EM fields are output. Therefore, this approach minimizes the total number of unknowns to solve. To ensure both numerical stability and an efficient time-step, the system of FETD equations is discretized using an implicit backward Euler scheme. A sparse direct solver is employed to solve the system of equations. In the implementation of the FETD algorithm, I effectively mitigate the computational cost of solving the system of equations at every time step by reusing previous factorization results. Since the high frequency contents of the transient electric fields attenuate more rapidly in time, the transient electric fields diffuse increasingly slowly over time. Therefore, the FETD algorithm adaptively doubles a time-step size, speeding up simulations. Although the first FETD algorithm has the minimum number of unknowns, it still requires a large amount of memory because of its use of a direct solver. To mitigate this problem, the second FETD algorithm is derived from a vector-and-scalar potential equation that can be solved with an iterative method. The time derivative of the Lorenz gauge condition is used to split the ungauged vector-and-scalar potential equation into a diffusion equation for the vector potential and Poisson's equation for the scalar potential. The diffusion equation for the time derivative of the magnetic vector potentials is the primary equation that is solved at every time step. Poisson's equation is considered a secondary equation and is evaluated only at the time steps where the electric fields are output. A major advantage of this formulation is that the system of equations resulting from the diffusion equation not only has the minimum number of unknowns but also can be solved stably with an iterative solver in the static limit. The developed FETD algorithms are used to simulate the TDCSEM method in shallow offshore models that are derived from SEG salt model. In the offshore models, horizontal and vertical electric-dipole-source configurations are investigated and compared with each other. FETD simulation and visualization play important roles in analyzing the EM diffusion of the TDCSEM configurations. The partially-'guided' diffusion of transient electric fields through a thin reservoir is identified on the cross-section of the seabed models. The modeling studies show that the TDCSEM method effectively senses the localized reservoir close to the large-scale salt structure in the shallow offshore environment. Since the reservoir is close to the salt, the non-linear interaction of the electric fields between the reservoir and the salt is observed. Regardless of whether a horizontal or vertical electric-dipole source is used in the shallow offshore models, inline vertical electric fields at intermediate-to-long offsets are approximately an order of magnitude smaller than horizontal counterparts due to the effect of the air-seawater interface. Consequently, the vertical electric-field measurements become vulnerable to the receiver tilt that results from the irregular seafloor topography. The 3D modeling studies also illustrate that the short-offset VED-Ex configuration is very sensitive to a subtle change of the seafloor topography around the VED source. Therefore, the VED-Ex configuration is vulnerable to measurements and modeling errors at short offsets. In contrast, the VED-Ez configuration is relatively robust to these problems and is considered a practical short-offset configuration. It is demonstrated that the short-offset configuration can be used to estimate the lateral extent and depth of the reservoir. Vertical anisotropy in background also significantly affects the pattern in electric field diffusion by elongating and strengthening the electric field in the horizontal direction. As the degree of vertical anisotropy increases, the vertical resistivity contrast across the reservoir interface decreases. As a result, the week reservoir response is increasingly masked by the elongated and strengthened background response. Consequently, the TDCSEM method loses its sensitivity to the reservoir.