Author: Yoshio Waseda
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Science
Languages : en
Pages : 358
Book Description
The Structure of Non-crystalline Materials
Author: Yoshio Waseda
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Science
Languages : en
Pages : 358
Book Description
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN:
Category : Science
Languages : en
Pages : 358
Book Description
Properties and Applications of Amorphous Materials
Author: M.F. Thorpe
Publisher: Springer Science & Business Media
ISBN: 9401009147
Category : Science
Languages : en
Pages : 451
Book Description
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials, with particular emphasis on electronic properties and device applications. In order to limit the material to a manageable amount, the meeting was concerned almost exclusively with semiconducting materials. This volume should be regarded as a follow-on to the NATO ASI held in Sozopol, Bulgaria in 1996 and published as "Amorphous Insulators and Semiconductors" edited by M.F. Thorpe and M.1. Mitkova (Kluwer Academic Publishers, NATO ASI series, 3 High Technology - Vol. 23). The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas, and the lectures and seminars that were given are presented in this volume. During the first week of the meeting, an emphasis was placed on introductory lectures while the second week focused more on research seminars. There were two very good poster sessions that generated a lot of discussion, but these are not reproduced in this volume as the editors wanted to have only larger contributions to make the proceedings more coherent.
Publisher: Springer Science & Business Media
ISBN: 9401009147
Category : Science
Languages : en
Pages : 451
Book Description
The aim of this NATO ASI has been to present an up-to-date overview of current areas of interest in amorphous materials, with particular emphasis on electronic properties and device applications. In order to limit the material to a manageable amount, the meeting was concerned almost exclusively with semiconducting materials. This volume should be regarded as a follow-on to the NATO ASI held in Sozopol, Bulgaria in 1996 and published as "Amorphous Insulators and Semiconductors" edited by M.F. Thorpe and M.1. Mitkova (Kluwer Academic Publishers, NATO ASI series, 3 High Technology - Vol. 23). The lectures and seminars fill the gap between graduate courses and research seminars. The lecturers and seminar speakers were chosen as experts in their respective areas, and the lectures and seminars that were given are presented in this volume. During the first week of the meeting, an emphasis was placed on introductory lectures while the second week focused more on research seminars. There were two very good poster sessions that generated a lot of discussion, but these are not reproduced in this volume as the editors wanted to have only larger contributions to make the proceedings more coherent.
Structure and Bonding in Crystalline Materials
Author: Gregory S. Rohrer
Publisher: Cambridge University Press
ISBN: 9780521663793
Category : Science
Languages : en
Pages : 554
Book Description
One of the motivating questions in materials research today is, how can elements be combined to produce a solid with specified properties? This book is intended to acquaint the reader with established principles of crystallography and cohesive forces that are needed to address the fundamental relationship between the composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science. It will also be useful to scientists and engineers who work with solid materials.
Publisher: Cambridge University Press
ISBN: 9780521663793
Category : Science
Languages : en
Pages : 554
Book Description
One of the motivating questions in materials research today is, how can elements be combined to produce a solid with specified properties? This book is intended to acquaint the reader with established principles of crystallography and cohesive forces that are needed to address the fundamental relationship between the composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science. It will also be useful to scientists and engineers who work with solid materials.
Conduction in Non-crystalline Materials
Author: Sir Nevill Francis Mott
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 144
Book Description
Introduces the theoretical aspects of conduction processes in an unusually wide range of non-crystalline materials. Simple, up-to-date accounts.
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 144
Book Description
Introduces the theoretical aspects of conduction processes in an unusually wide range of non-crystalline materials. Simple, up-to-date accounts.
Crystalline and Non-crystalline Solids
Author: Pietro Mandracci
Publisher: BoD – Books on Demand
ISBN: 9535124455
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The structural properties of materials play a fundamental role in the determination of their suitability for a specific application. This book is intended as a contribution to the efforts to increase the knowledge of the influence exerted on the properties of materials by their crystalline or amorphous structure. To this aim, some of the materials that are most promising for their use in different technological fields have been studied, namely graphene, titanium oxide, several types of functional metal oxides, porphyrinic crystalline solids, plasma deposited polymers, amorphous silicon, as well as hydrogenated amorphous carbon. These materials have been presented by the authors for their use in different applications, including microelectronics, photonics, and biomedicine.
Publisher: BoD – Books on Demand
ISBN: 9535124455
Category : Technology & Engineering
Languages : en
Pages : 186
Book Description
The structural properties of materials play a fundamental role in the determination of their suitability for a specific application. This book is intended as a contribution to the efforts to increase the knowledge of the influence exerted on the properties of materials by their crystalline or amorphous structure. To this aim, some of the materials that are most promising for their use in different technological fields have been studied, namely graphene, titanium oxide, several types of functional metal oxides, porphyrinic crystalline solids, plasma deposited polymers, amorphous silicon, as well as hydrogenated amorphous carbon. These materials have been presented by the authors for their use in different applications, including microelectronics, photonics, and biomedicine.
The Structure of Non-crystalline Materials
Author: P. H. Gaskell
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 282
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 282
Book Description
Structure of Materials
Author: Marc De Graef
Publisher: Cambridge University Press
ISBN: 1139560476
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
Publisher: Cambridge University Press
ISBN: 1139560476
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This highly readable, popular textbook for upper undergraduates and graduates comprehensively covers the fundamentals of crystallography and symmetry, applying these concepts to a large range of materials. New to this edition are more streamlined coverage of crystallography, additional coverage of magnetic point group symmetry and updated material on extraterrestrial minerals and rocks. New exercises at the end of chapters, plus over 500 additional exercises available online, allow students to check their understanding of key concepts and put into practice what they have learnt. Over 400 illustrations within the text help students visualise crystal structures and more abstract mathematical objects, supporting more difficult topics like point group symmetries. Historical and biographical sections add colour and interest by giving an insight into those who have contributed significantly to the field. Supplementary online material includes password-protected solutions, over 100 crystal structure data files, and Powerpoints of figures from the book.
Glass Nanocomposites
Author: Basudeb Karmakar
Publisher: William Andrew
ISBN: 0323393128
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Glass Nanocomposites: Synthesis, Properties and Applications provides the latest information on a rapidly growing field of specialized materials, bringing light to new research findings that include a growing number of technologies and applications. With this growth, a new need for deep understanding of the synthesis methods, composite structure, processing and application of glass nanocomposites has emerged. In the book, world renowned experts in the field, Professors Karmakar, Rademann, and Stepanov, fill the knowledge gap, building a bridge between the areas of nanoscience, photonics, and glass technology. The book covers the fundamentals, synthesis, processing, material properties, structure property correlation, interpretation thereof, characterization, and a wide range of applications of glass nanocomposites in many different devices and branches of technology. Recent developments and future directions of all types of glass nanocomposites, such as metal-glasses (e.g., metal nanowire composites, nanoglass-mesoporous silica composites), semiconductor-glass and ceramic-glass nanocomposites, as well as oxide and non-oxide glasses, are also covered in great depth. Each chapter is logically structured in order to increase coherence, with each including question sets as exercises for a deeper understanding of the text. - Provides comprehensive and up-to-date knowledge and literature review for both the oxide and non-oxide glass nanocomposites (i.e., practically all types of glass nanocomposites) - Reviews a wide range of synthesis types, properties, characterization, and applications of diverse types of glass nanocomposites - Presents future directions of glass nanocomposites for researchers and engineers, as well as question sets for use in university courses
Publisher: William Andrew
ISBN: 0323393128
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Glass Nanocomposites: Synthesis, Properties and Applications provides the latest information on a rapidly growing field of specialized materials, bringing light to new research findings that include a growing number of technologies and applications. With this growth, a new need for deep understanding of the synthesis methods, composite structure, processing and application of glass nanocomposites has emerged. In the book, world renowned experts in the field, Professors Karmakar, Rademann, and Stepanov, fill the knowledge gap, building a bridge between the areas of nanoscience, photonics, and glass technology. The book covers the fundamentals, synthesis, processing, material properties, structure property correlation, interpretation thereof, characterization, and a wide range of applications of glass nanocomposites in many different devices and branches of technology. Recent developments and future directions of all types of glass nanocomposites, such as metal-glasses (e.g., metal nanowire composites, nanoglass-mesoporous silica composites), semiconductor-glass and ceramic-glass nanocomposites, as well as oxide and non-oxide glasses, are also covered in great depth. Each chapter is logically structured in order to increase coherence, with each including question sets as exercises for a deeper understanding of the text. - Provides comprehensive and up-to-date knowledge and literature review for both the oxide and non-oxide glass nanocomposites (i.e., practically all types of glass nanocomposites) - Reviews a wide range of synthesis types, properties, characterization, and applications of diverse types of glass nanocomposites - Presents future directions of glass nanocomposites for researchers and engineers, as well as question sets for use in university courses
Development History Of Ancient Chinese Glass Technology
Author:
Publisher: World Scientific
ISBN: 9811229783
Category : Science
Languages : en
Pages : 818
Book Description
Worldwide research on ancient glass began in the early 20th century. A consensus has been reached in the community of Archaeology that the first manmade or synthetic glasses, based on archaeological findings, originated in the Middle East during the 5000-3000's BC. By contrast, the manufacturing technology of pottery and ceramics were well developed in ancient China. The earliest pottery and ceramics dates back to the Shang Dynasty - the Zhou Dynasty (1700 BC-770 BC), while the earliest ancient glass artifacts unearthed in China dates back to the Western Han Dynasty. Utilizing the state-of-the art analytical and spectroscopic methods, the recent findings demonstrate that China had already developed its own glassmaking technology at latest since 200 BC. There are two schools of viewpoint on the origin of ancient Chinese glass. The more common one believes that ancient Chinese glass originated from the import of glassmaking technology from the West as a result of Sino-West trade exchanges in the Western Han Dynasty (206 BC-25 AD). The other scientifically demonstrates that homemade ancient Chinese glass with unique domestic formula containing both PbO and BaO were made as early as in the Pre-Qin Period or even the Warring States Period (770 BC-221 BC), known as Yousha or Faience.This English version of the previously published Chinese book entitled Development History of Ancient Chinese Glass Technology is for universities and research institutes where various research and educational activities of ancient glass and history are conducted. With 18 chapters, the scope of this book covers very detailed information on scientifically based findings of ancient Chinese glass development and imports and influence of foreign glass products as well as influence of the foreign glass manufacturing processes through the trade exchanges along the Silk Road(s).
Publisher: World Scientific
ISBN: 9811229783
Category : Science
Languages : en
Pages : 818
Book Description
Worldwide research on ancient glass began in the early 20th century. A consensus has been reached in the community of Archaeology that the first manmade or synthetic glasses, based on archaeological findings, originated in the Middle East during the 5000-3000's BC. By contrast, the manufacturing technology of pottery and ceramics were well developed in ancient China. The earliest pottery and ceramics dates back to the Shang Dynasty - the Zhou Dynasty (1700 BC-770 BC), while the earliest ancient glass artifacts unearthed in China dates back to the Western Han Dynasty. Utilizing the state-of-the art analytical and spectroscopic methods, the recent findings demonstrate that China had already developed its own glassmaking technology at latest since 200 BC. There are two schools of viewpoint on the origin of ancient Chinese glass. The more common one believes that ancient Chinese glass originated from the import of glassmaking technology from the West as a result of Sino-West trade exchanges in the Western Han Dynasty (206 BC-25 AD). The other scientifically demonstrates that homemade ancient Chinese glass with unique domestic formula containing both PbO and BaO were made as early as in the Pre-Qin Period or even the Warring States Period (770 BC-221 BC), known as Yousha or Faience.This English version of the previously published Chinese book entitled Development History of Ancient Chinese Glass Technology is for universities and research institutes where various research and educational activities of ancient glass and history are conducted. With 18 chapters, the scope of this book covers very detailed information on scientifically based findings of ancient Chinese glass development and imports and influence of foreign glass products as well as influence of the foreign glass manufacturing processes through the trade exchanges along the Silk Road(s).
Non-Crystalline Chalcogenicides
Author: M.A. Popescu
Publisher: Springer Science & Business Media
ISBN: 0306471299
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: “New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.
Publisher: Springer Science & Business Media
ISBN: 0306471299
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
The earliest experimental data on an oxygen-free glass have been published by Schulz-Sellack in 1870 [1]. Later on, in 1902, Wood [2], as well as Meier in 1910 [3], carried out the first researches on the optical properties of vitreous selenium. The interest in the glasses that exhibit transparency in the infrared region of the optical spectrum rose at the beginning of the twentieth century. Firstly were investigated the heavy metal oxides and the transparency limit was extended from (the case of the classical oxide glasses) up to wavelength. In order to extend this limit above the scientists tried the chemical compositions based on the elements of the sixth group of the Periodic Table, the chalcogens: sulphur, selenium and tellurium. The systematic research in the field of glasses based on chalcogens, called chalcogenide glasses, started at the middle of our century. In 1950 Frerichs [4] investigated the glass and published the paper: “New optical glasses transparent in infrared up to 12 . Several years later he started the study of the selenium glass and prepared several binary glasses with sulphur [5]. Glaze and co-workers [6] developed in 1957 the first method for the preparation of the glass at the industrial scale, while Winter-Klein [7] published reports on numerous chalcogenides prepared in the vitreous state.