Author: Anne O'Neil
Publisher: SAE International
ISBN: 1468607200
Category : Technology & Engineering
Languages : en
Pages : 28
Book Description
Growing levels of complexity and integration coupled with the current period of automotive innovation are necessitating the adoption of Systems approaches and Systems Engineering (SE) practices. For the automotive industry to navigate this transformative period successfully, we need Systems approaches to bridge all elements of vehicle development and engage and align all parts of the business. Yet, the industry has lagged in comprehensive SE adoption, persistently retaining organizational silos and outdated paradigms for vehicle design development teams. It still structures itself around physical components of vehicles, despite having the significant majority of functionality and features derived from software and communications. The State of Systems Engineering Adoption in the Automotive Industry captures the unresolved aspects of more comprehensively adopting Systems approaches and practices and seeks to enable industry leaders to more effectively navigate the complexity and integration challenges faced during this unprecedented period of disruptive innovation and change. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023030
The State of Systems Engineering Adoption in the Automotive Industry
Author: Anne O'Neil
Publisher: SAE International
ISBN: 1468607200
Category : Technology & Engineering
Languages : en
Pages : 28
Book Description
Growing levels of complexity and integration coupled with the current period of automotive innovation are necessitating the adoption of Systems approaches and Systems Engineering (SE) practices. For the automotive industry to navigate this transformative period successfully, we need Systems approaches to bridge all elements of vehicle development and engage and align all parts of the business. Yet, the industry has lagged in comprehensive SE adoption, persistently retaining organizational silos and outdated paradigms for vehicle design development teams. It still structures itself around physical components of vehicles, despite having the significant majority of functionality and features derived from software and communications. The State of Systems Engineering Adoption in the Automotive Industry captures the unresolved aspects of more comprehensively adopting Systems approaches and practices and seeks to enable industry leaders to more effectively navigate the complexity and integration challenges faced during this unprecedented period of disruptive innovation and change. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023030
Publisher: SAE International
ISBN: 1468607200
Category : Technology & Engineering
Languages : en
Pages : 28
Book Description
Growing levels of complexity and integration coupled with the current period of automotive innovation are necessitating the adoption of Systems approaches and Systems Engineering (SE) practices. For the automotive industry to navigate this transformative period successfully, we need Systems approaches to bridge all elements of vehicle development and engage and align all parts of the business. Yet, the industry has lagged in comprehensive SE adoption, persistently retaining organizational silos and outdated paradigms for vehicle design development teams. It still structures itself around physical components of vehicles, despite having the significant majority of functionality and features derived from software and communications. The State of Systems Engineering Adoption in the Automotive Industry captures the unresolved aspects of more comprehensively adopting Systems approaches and practices and seeks to enable industry leaders to more effectively navigate the complexity and integration challenges faced during this unprecedented period of disruptive innovation and change. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2023030
MITRE Systems Engineering Guide
Author:
Publisher:
ISBN: 9780615974422
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780615974422
Category :
Languages : en
Pages :
Book Description
Systems Engineering for Automotive Powertrain Development
Author: Hannes Hick
Publisher: Springer
ISBN: 9783319996288
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
For the last century, the automotive industry has been dominated by internal combustion engines. Their flexibility of application, driving range, performance and sporty characteristics has resulted in several generations of this technology and has formed generations of engineers. But that is not the end of the story. Stricter legislation and increased environmental awareness have resulted in the development of new powertrain technologies in addition and parallel to the highly optimized internal combustion engine. Hybrid powertrains systems, pure battery electric systems and fuel cell systems, in conjunction with a diverse range of applications, have increased the spectrum of powertrain technologies. Furthermore, automated driving together with intelligent and highly connected systems are changing the way to get from A to B. Not only is the interaction of all these new technologies challenging, but also several different disciplines have to collaborate intensively in order for new powertrain systems to be successfully developed. These new technologies and the resulting challenges lead to an increase in system complexity. Approaches such as systems engineering are necessary to manage this complexity. To show how systems engineering manages the increasing complexity of modern powertrain systems, by providing processes, methods, organizational aspects and tools, this book has been structured into five parts. Starting with Challenges for Powertrain Development, which describes automotive-related challenges at different levels of the system hierarchy and from different point of views. The book then continues with the core part, Systems Engineering, in which all the basics of systems engineering, model-based systems engineering, and their related processes, methods, tools, and organizational matters are described. A special focus is placed on important standards and the human factor. The third part, Automotive Powertrain Systems Engineering Approach, puts the fundamentals of systems engineering into practice by adding the automotive context. This part focuses on system development and also considers the interactions to hardware and software development. Several approaches and methods are presented based on systems engineering philosophy. Part four, Powertrain Development Case Studies, adds the practical point of view by providing a range of case studies on powertrain system level and on powertrain element level and discusses the development of hybrid powertrain, internal combustion engines, e-drives, transmissions, batteries and fuel cell systems. Two case studies on a vehicle level are also presented. The final part, Outlook, considers the development of systems engineering itself with particular focus on information communication technologies. Even though this book covers systems engineering from an automotive perspective, many of the challenges, fundamental principles, conclusions and outlooks can be applied to other domains too. Therefore, this book is not only relevant for automotive engineers and students, but also for specialists in scientific and industrial positions in other domains and anyone who has to cope with the challenge of successfully developing complex systems with a large number of collaborating disciplines.
Publisher: Springer
ISBN: 9783319996288
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
For the last century, the automotive industry has been dominated by internal combustion engines. Their flexibility of application, driving range, performance and sporty characteristics has resulted in several generations of this technology and has formed generations of engineers. But that is not the end of the story. Stricter legislation and increased environmental awareness have resulted in the development of new powertrain technologies in addition and parallel to the highly optimized internal combustion engine. Hybrid powertrains systems, pure battery electric systems and fuel cell systems, in conjunction with a diverse range of applications, have increased the spectrum of powertrain technologies. Furthermore, automated driving together with intelligent and highly connected systems are changing the way to get from A to B. Not only is the interaction of all these new technologies challenging, but also several different disciplines have to collaborate intensively in order for new powertrain systems to be successfully developed. These new technologies and the resulting challenges lead to an increase in system complexity. Approaches such as systems engineering are necessary to manage this complexity. To show how systems engineering manages the increasing complexity of modern powertrain systems, by providing processes, methods, organizational aspects and tools, this book has been structured into five parts. Starting with Challenges for Powertrain Development, which describes automotive-related challenges at different levels of the system hierarchy and from different point of views. The book then continues with the core part, Systems Engineering, in which all the basics of systems engineering, model-based systems engineering, and their related processes, methods, tools, and organizational matters are described. A special focus is placed on important standards and the human factor. The third part, Automotive Powertrain Systems Engineering Approach, puts the fundamentals of systems engineering into practice by adding the automotive context. This part focuses on system development and also considers the interactions to hardware and software development. Several approaches and methods are presented based on systems engineering philosophy. Part four, Powertrain Development Case Studies, adds the practical point of view by providing a range of case studies on powertrain system level and on powertrain element level and discusses the development of hybrid powertrain, internal combustion engines, e-drives, transmissions, batteries and fuel cell systems. Two case studies on a vehicle level are also presented. The final part, Outlook, considers the development of systems engineering itself with particular focus on information communication technologies. Even though this book covers systems engineering from an automotive perspective, many of the challenges, fundamental principles, conclusions and outlooks can be applied to other domains too. Therefore, this book is not only relevant for automotive engineers and students, but also for specialists in scientific and industrial positions in other domains and anyone who has to cope with the challenge of successfully developing complex systems with a large number of collaborating disciplines.
The Software-defined Vehicle and Its Engineering Evolution
Author: Partha Goswami
Publisher: SAE International
ISBN: 1468608118
Category : Technology & Engineering
Languages : en
Pages : 26
Book Description
The automobile is undergoing the biggest transformation of its 100-year history. Motivated by consumer desire for automobiles to integrate with their digital life and inspired by new electric vehicles (EVs) that routinely receive over-the-air software updates, traditional automakers are embarking on a journey to re-engineer the vehicle as a platform defined by software. The foundation of the shift is a complete re-design from a mechanical hardware-centric system to a cloud-connected, software-centric ecosystem where each function is executed via a service-oriented architecture. This is the basis of the software-defined vehicle (SDV). The Software-defined Vehicle and its Engineering Evolution: Balancing Issues and Challenges in a New Paradigm of Product Development examines the complex journey ahead for traditional manufacturers as they transition to this new software-defined system. The shift will literally impact every facet of the industry, from organizational culture, tools, and processes to supply chain management, skill development, and more. This report covers the state of the industry, explores key facets and challenges of SDVs, and provides recommendations as to how to embrace the change. It also considers the balance between vertically and horizontally integrated product development. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024007
Publisher: SAE International
ISBN: 1468608118
Category : Technology & Engineering
Languages : en
Pages : 26
Book Description
The automobile is undergoing the biggest transformation of its 100-year history. Motivated by consumer desire for automobiles to integrate with their digital life and inspired by new electric vehicles (EVs) that routinely receive over-the-air software updates, traditional automakers are embarking on a journey to re-engineer the vehicle as a platform defined by software. The foundation of the shift is a complete re-design from a mechanical hardware-centric system to a cloud-connected, software-centric ecosystem where each function is executed via a service-oriented architecture. This is the basis of the software-defined vehicle (SDV). The Software-defined Vehicle and its Engineering Evolution: Balancing Issues and Challenges in a New Paradigm of Product Development examines the complex journey ahead for traditional manufacturers as they transition to this new software-defined system. The shift will literally impact every facet of the industry, from organizational culture, tools, and processes to supply chain management, skill development, and more. This report covers the state of the industry, explores key facets and challenges of SDVs, and provides recommendations as to how to embrace the change. It also considers the balance between vertically and horizontally integrated product development. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024007
Systems Design Engineering: A Holistic Requirements-led Approach to Concept Design
Author: David Paul Genter
Publisher: SAE International
ISBN: 1468608878
Category : Technology & Engineering
Languages : en
Pages : 22
Book Description
Many organizations are falling far short of achieving the lifecycle potential of their new product designs. One major source of this suboptimal business performance stems from underleveraging key Systems Engineering and Design Engineering principles in the early phases of the design process. If these are being poorly applied, the following will likely occur: Inefficient use of engineering (and other cross-functional) resources Unnecessarily high product development costs Delayed time-to-market Subpar launch quality Poor system-level safety Suboptimal lifecycle sustainability-related performance Compromised design innovation This report addresses these challenges and articulates how an integrated approach of “Systems Design Engineering” provides nonburdensome and quickly applied methods for overcoming these shortcomings, placing a dedicated focus on the three high-level principles that govern lifecycle product design success. Excellent and efficient performance against each of them is needed to achieve a new product’s lifecycle goals. Holistically understanding the needs and opportunities of a system Efficient development of system-level design concepts with best-in-class potential System-level design concept selection, including effective risk mitigation Click here to access the full SAE EDGETM Research Report portfolio. 9781468608878 9781468608885 https://doi.org/10.4271/EPR2024024
Publisher: SAE International
ISBN: 1468608878
Category : Technology & Engineering
Languages : en
Pages : 22
Book Description
Many organizations are falling far short of achieving the lifecycle potential of their new product designs. One major source of this suboptimal business performance stems from underleveraging key Systems Engineering and Design Engineering principles in the early phases of the design process. If these are being poorly applied, the following will likely occur: Inefficient use of engineering (and other cross-functional) resources Unnecessarily high product development costs Delayed time-to-market Subpar launch quality Poor system-level safety Suboptimal lifecycle sustainability-related performance Compromised design innovation This report addresses these challenges and articulates how an integrated approach of “Systems Design Engineering” provides nonburdensome and quickly applied methods for overcoming these shortcomings, placing a dedicated focus on the three high-level principles that govern lifecycle product design success. Excellent and efficient performance against each of them is needed to achieve a new product’s lifecycle goals. Holistically understanding the needs and opportunities of a system Efficient development of system-level design concepts with best-in-class potential System-level design concept selection, including effective risk mitigation Click here to access the full SAE EDGETM Research Report portfolio. 9781468608878 9781468608885 https://doi.org/10.4271/EPR2024024
Automotive Systems and Software Engineering
Author: Yanja Dajsuren
Publisher: Springer
ISBN: 3030121577
Category : Computers
Languages : en
Pages : 364
Book Description
This book presents the state of the art, challenges and future trends in automotive software engineering. The amount of automotive software has grown from just a few lines of code in the 1970s to millions of lines in today’s cars. And this trend seems destined to continue in the years to come, considering all the innovations in electric/hybrid, autonomous, and connected cars. Yet there are also concerns related to onboard software, such as security, robustness, and trust. This book covers all essential aspects of the field. After a general introduction to the topic, it addresses automotive software development, automotive software reuse, E/E architectures and safety, C-ITS and security, and future trends. The specific topics discussed include requirements engineering for embedded software systems, tools and methods used in the automotive industry, software product lines, architectural frameworks, various related ISO standards, functional safety and safety cases, cooperative intelligent transportation systems, autonomous vehicles, and security and privacy issues. The intended audience includes researchers from academia who want to learn what the fundamental challenges are and how they are being tackled in the industry, and practitioners looking for cutting-edge academic findings. Although the book is not written as lecture notes, it can also be used in advanced master’s-level courses on software and system engineering. The book also includes a number of case studies that can be used for student projects.
Publisher: Springer
ISBN: 3030121577
Category : Computers
Languages : en
Pages : 364
Book Description
This book presents the state of the art, challenges and future trends in automotive software engineering. The amount of automotive software has grown from just a few lines of code in the 1970s to millions of lines in today’s cars. And this trend seems destined to continue in the years to come, considering all the innovations in electric/hybrid, autonomous, and connected cars. Yet there are also concerns related to onboard software, such as security, robustness, and trust. This book covers all essential aspects of the field. After a general introduction to the topic, it addresses automotive software development, automotive software reuse, E/E architectures and safety, C-ITS and security, and future trends. The specific topics discussed include requirements engineering for embedded software systems, tools and methods used in the automotive industry, software product lines, architectural frameworks, various related ISO standards, functional safety and safety cases, cooperative intelligent transportation systems, autonomous vehicles, and security and privacy issues. The intended audience includes researchers from academia who want to learn what the fundamental challenges are and how they are being tackled in the industry, and practitioners looking for cutting-edge academic findings. Although the book is not written as lecture notes, it can also be used in advanced master’s-level courses on software and system engineering. The book also includes a number of case studies that can be used for student projects.
INCOSE Systems Engineering Handbook
Author: INCOSE
Publisher: John Wiley & Sons
ISBN: 111899941X
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
A detailed and thorough reference on the discipline and practice of systems engineering The objective of the International Council on Systems Engineering (INCOSE) Systems Engineering Handbook is to describe key process activities performed by systems engineers and other engineering professionals throughout the life cycle of a system. The book covers a wide range of fundamental system concepts that broaden the thinking of the systems engineering practitioner, such as system thinking, system science, life cycle management, specialty engineering, system of systems, and agile and iterative methods. This book also defines the discipline and practice of systems engineering for students and practicing professionals alike, providing an authoritative reference that is acknowledged worldwide. The latest edition of the INCOSE Systems Engineering Handbook: Is consistent with ISO/IEC/IEEE 15288:2015 Systems and software engineering—System life cycle processes and the Guide to the Systems Engineering Body of Knowledge (SEBoK) Has been updated to include the latest concepts of the INCOSE working groups Is the body of knowledge for the INCOSE Certification Process This book is ideal for any engineering professional who has an interest in or needs to apply systems engineering practices. This includes the experienced systems engineer who needs a convenient reference, a product engineer or engineer in another discipline who needs to perform systems engineering, a new systems engineer, or anyone interested in learning more about systems engineering.
Publisher: John Wiley & Sons
ISBN: 111899941X
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
A detailed and thorough reference on the discipline and practice of systems engineering The objective of the International Council on Systems Engineering (INCOSE) Systems Engineering Handbook is to describe key process activities performed by systems engineers and other engineering professionals throughout the life cycle of a system. The book covers a wide range of fundamental system concepts that broaden the thinking of the systems engineering practitioner, such as system thinking, system science, life cycle management, specialty engineering, system of systems, and agile and iterative methods. This book also defines the discipline and practice of systems engineering for students and practicing professionals alike, providing an authoritative reference that is acknowledged worldwide. The latest edition of the INCOSE Systems Engineering Handbook: Is consistent with ISO/IEC/IEEE 15288:2015 Systems and software engineering—System life cycle processes and the Guide to the Systems Engineering Body of Knowledge (SEBoK) Has been updated to include the latest concepts of the INCOSE working groups Is the body of knowledge for the INCOSE Certification Process This book is ideal for any engineering professional who has an interest in or needs to apply systems engineering practices. This includes the experienced systems engineer who needs a convenient reference, a product engineer or engineer in another discipline who needs to perform systems engineering, a new systems engineer, or anyone interested in learning more about systems engineering.
ADAS and Automated Driving
Author: Plato Pathrose
Publisher: SAE International
ISBN: 1468607448
Category : Transportation
Languages : en
Pages : 381
Book Description
"Immerse yourself in the evolving world of automotive technology with ADAS and Automated Driving - Systems Engineering. Explore advanced driver assistance systems (ADAS) and automated driving, revealing the automotive industry’s technological revolution. As technology becomes a driving force, this book serves as a guide to understanding cutting-edge technologies deployed by leading vehicle manufacturers. Discover how multiple systems synergize to provide ADAS and automated driving functions. Authored by an industry expert, this book explores systems engineering’s crucial role in designing, safety-critical cyber-physical systems. Gain practical insights into the processes and methods adapted for the current technological era of software-defined vehicles, influenced by AI, digitalization, and rapid technological advances. Whether you're a seasoned engineer navigating the shift to software-defined vehicles or a student eager to grasp systems engineering methods, this book is your key to unlocking the skills demanded in the exciting era of digitalization. Immerse yourself in real-world examples drawn from industry experiences, bridging the gap between theory and practical application. Gain the knowledge and expertise needed to embark on projects involving the intricate world of cyber-physical systems with ADAS and Automated Driving - Systems Engineering. “As this book demonstrates, systems engineering is needed more than ever to navigate the complexities of the type of projects where alternative delivery models are applied and to help ensure effective delivery even within the constraints of aggressive and adaptable schedules.” Dr David Ward Global Head of Vehicle Resilience—Functional Safety HORIBA MIRA Limited “This book holistically explains the lifecycle and the processes for ADAS and autonomous systems and their influence on the overall vehicle over its complete lifecycle.” Matthias Schulze Vice President, ADAS Product, ecarx" (ISBN 9781468607444, ISBN 9781468607451, ISBN 9781468607468, DOI 10.4271/9781468607451)
Publisher: SAE International
ISBN: 1468607448
Category : Transportation
Languages : en
Pages : 381
Book Description
"Immerse yourself in the evolving world of automotive technology with ADAS and Automated Driving - Systems Engineering. Explore advanced driver assistance systems (ADAS) and automated driving, revealing the automotive industry’s technological revolution. As technology becomes a driving force, this book serves as a guide to understanding cutting-edge technologies deployed by leading vehicle manufacturers. Discover how multiple systems synergize to provide ADAS and automated driving functions. Authored by an industry expert, this book explores systems engineering’s crucial role in designing, safety-critical cyber-physical systems. Gain practical insights into the processes and methods adapted for the current technological era of software-defined vehicles, influenced by AI, digitalization, and rapid technological advances. Whether you're a seasoned engineer navigating the shift to software-defined vehicles or a student eager to grasp systems engineering methods, this book is your key to unlocking the skills demanded in the exciting era of digitalization. Immerse yourself in real-world examples drawn from industry experiences, bridging the gap between theory and practical application. Gain the knowledge and expertise needed to embark on projects involving the intricate world of cyber-physical systems with ADAS and Automated Driving - Systems Engineering. “As this book demonstrates, systems engineering is needed more than ever to navigate the complexities of the type of projects where alternative delivery models are applied and to help ensure effective delivery even within the constraints of aggressive and adaptable schedules.” Dr David Ward Global Head of Vehicle Resilience—Functional Safety HORIBA MIRA Limited “This book holistically explains the lifecycle and the processes for ADAS and autonomous systems and their influence on the overall vehicle over its complete lifecycle.” Matthias Schulze Vice President, ADAS Product, ecarx" (ISBN 9781468607444, ISBN 9781468607451, ISBN 9781468607468, DOI 10.4271/9781468607451)
Autonomous Vehicle Technology
Author: James M. Anderson
Publisher: Rand Corporation
ISBN: 0833084372
Category : Transportation
Languages : en
Pages : 215
Book Description
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
Publisher: Rand Corporation
ISBN: 0833084372
Category : Transportation
Languages : en
Pages : 215
Book Description
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
Automotive Development Processes
Author: Julian Weber
Publisher: Springer Science & Business Media
ISBN: 3642012531
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The global crisis the automotive industry has slipped into over the second half of 2008 has set a fierce spotlight not only on which cars are the right ones to bring to the market but also on how these cars are developed. Be it OEMs developing new models, suppliers integerating themselves deeper into the development processes of different OEMs, analysts estimating economical risks and opportunities of automotive investments, or even governments creating and evaluating scenarios for financial aid for suffering automotive companies: At the end of the day, it is absolutely indispensable to comprehensively understand the processes of auto- tive development – the core subject of this book. Let’s face it: More than a century after Carl Benz, Wilhelm Maybach and Gottlieb Daimler developed and produced their first motor vehicles, the overall concept of passenger cars has not changed much. Even though components have been considerably optimized since then, motor cars in the 21st century are still driven by combustion engines that transmit their propulsive power to the road s- face via gearboxes, transmission shafts and wheels, which together with spri- damper units allow driving stability and ride comfort. Vehicles are still navigated by means of a steering wheel that turns the front wheels, and the required control elements are still located on a dashboard in front of the driver who operates the car sitting in a seat.
Publisher: Springer Science & Business Media
ISBN: 3642012531
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The global crisis the automotive industry has slipped into over the second half of 2008 has set a fierce spotlight not only on which cars are the right ones to bring to the market but also on how these cars are developed. Be it OEMs developing new models, suppliers integerating themselves deeper into the development processes of different OEMs, analysts estimating economical risks and opportunities of automotive investments, or even governments creating and evaluating scenarios for financial aid for suffering automotive companies: At the end of the day, it is absolutely indispensable to comprehensively understand the processes of auto- tive development – the core subject of this book. Let’s face it: More than a century after Carl Benz, Wilhelm Maybach and Gottlieb Daimler developed and produced their first motor vehicles, the overall concept of passenger cars has not changed much. Even though components have been considerably optimized since then, motor cars in the 21st century are still driven by combustion engines that transmit their propulsive power to the road s- face via gearboxes, transmission shafts and wheels, which together with spri- damper units allow driving stability and ride comfort. Vehicles are still navigated by means of a steering wheel that turns the front wheels, and the required control elements are still located on a dashboard in front of the driver who operates the car sitting in a seat.