Author: Andy R. Magid
Publisher: CRC Press
ISBN: 1482208067
Category : Mathematics
Languages : en
Pages : 184
Book Description
The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a n
The Separable Galois Theory of Commutative Rings
Author: Andy R. Magid
Publisher: CRC Press
ISBN: 1482208067
Category : Mathematics
Languages : en
Pages : 184
Book Description
The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a n
Publisher: CRC Press
ISBN: 1482208067
Category : Mathematics
Languages : en
Pages : 184
Book Description
The Separable Galois Theory of Commutative Rings, Second Edition provides a complete and self-contained account of the Galois theory of commutative rings from the viewpoint of categorical classification theorems and using solely the techniques of commutative algebra. Along with updating nearly every result and explanation, this edition contains a n
Separable Algebras over Commutative Rings
Author: Frank De Meyer
Publisher: Springer
ISBN: 3540364846
Category : Mathematics
Languages : en
Pages : 162
Book Description
These lecture notes were prepared by the authors for use in graduate courses and seminars, based on the work of many earlier mathematicians. In addition to very elementary results, presented for the convenience of the reader, Chapter I contains the Morita theorems and the definition of the projective class group of a commutative ring. Chapter II addresses the Brauer group of a commutative ring, and automorphisms of separable algebras. Chapter III surveys the principal theorems of the Galois theory for commutative rings. In Chapter IV the authors present a direct derivation of the first six terms of the seven-term exact sequence for Galois cohomology. In the fifth and final chapter the authors illustrate the preceding material with applications to the structure of central simple algebras and the Brauer group of a Dedekind domain, and they pose problems for further investigation. Exercises are included at the end of each chapter.
Publisher: Springer
ISBN: 3540364846
Category : Mathematics
Languages : en
Pages : 162
Book Description
These lecture notes were prepared by the authors for use in graduate courses and seminars, based on the work of many earlier mathematicians. In addition to very elementary results, presented for the convenience of the reader, Chapter I contains the Morita theorems and the definition of the projective class group of a commutative ring. Chapter II addresses the Brauer group of a commutative ring, and automorphisms of separable algebras. Chapter III surveys the principal theorems of the Galois theory for commutative rings. In Chapter IV the authors present a direct derivation of the first six terms of the seven-term exact sequence for Galois cohomology. In the fifth and final chapter the authors illustrate the preceding material with applications to the structure of central simple algebras and the Brauer group of a Dedekind domain, and they pose problems for further investigation. Exercises are included at the end of each chapter.
Galois Connections and Applications
Author: K. Denecke
Publisher: Springer Science & Business Media
ISBN: 1402018983
Category : Mathematics
Languages : en
Pages : 511
Book Description
Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".
Publisher: Springer Science & Business Media
ISBN: 1402018983
Category : Mathematics
Languages : en
Pages : 511
Book Description
Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".
The Separable Galois Theory of Commutative Rings
Author: Andy Roy Magid
Publisher:
ISBN: 9780824761431
Category : Commutative algebra
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780824761431
Category : Commutative algebra
Languages : en
Pages : 0
Book Description
Galois Theories
Author: Francis Borceux
Publisher: Cambridge University Press
ISBN: 9780521803090
Category : Mathematics
Languages : en
Pages : 360
Book Description
Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.
Publisher: Cambridge University Press
ISBN: 9780521803090
Category : Mathematics
Languages : en
Pages : 360
Book Description
Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Galois Extensions of Structured Ring Spectra/Stably Dualizable Groups
Author: John Rognes
Publisher: American Mathematical Soc.
ISBN: 0821840762
Category : Mathematics
Languages : en
Pages : 154
Book Description
The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.
Publisher: American Mathematical Soc.
ISBN: 0821840762
Category : Mathematics
Languages : en
Pages : 154
Book Description
The author introduces the notion of a Galois extension of commutative $S$-algebras ($E_\infty$ ring spectra), often localized with respect to a fixed homology theory. There are numerous examples, including some involving Eilenberg-Mac Lane spectra of commutative rings, real and complex topological $K$-theory, Lubin-Tate spectra and cochain $S$-algebras. He establishes the main theorem of Galois theory in this generality. Its proof involves the notions of separable and etale extensions of commutative $S$-algebras, and the Goerss-Hopkins-Miller theory for $E_\infty$ mapping spaces. He shows that the global sphere spectrum $S$ is separably closed, using Minkowski's discriminant theorem, and he estimates the separable closure of its localization with respect to each of the Morava $K$-theories. He also defines Hopf-Galois extensions of commutative $S$-algebras and studies the complex cobordism spectrum $MU$ as a common integral model for all of the local Lubin-Tate Galois extensions. The author extends the duality theory for topological groups from the classical theory for compact Lie groups, via the topological study by J. R. Klein and the $p$-complete study for $p$-compact groups by T. Bauer, to a general duality theory for stably dualizable groups in the $E$-local stable homotopy category, for any spectrum $E$.
Finite Commutative Rings and Their Applications
Author: Gilberto Bini
Publisher: Springer Science & Business Media
ISBN: 1461509572
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.
Publisher: Springer Science & Business Media
ISBN: 1461509572
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.
Separable Algebras
Author: Timothy J. Ford
Publisher: American Mathematical Soc.
ISBN: 1470437708
Category : Mathematics
Languages : en
Pages : 664
Book Description
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Publisher: American Mathematical Soc.
ISBN: 1470437708
Category : Mathematics
Languages : en
Pages : 664
Book Description
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
Galois Theory Through Exercises
Author: Juliusz Brzeziński
Publisher: Springer
ISBN: 331972326X
Category : Mathematics
Languages : en
Pages : 296
Book Description
This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.
Publisher: Springer
ISBN: 331972326X
Category : Mathematics
Languages : en
Pages : 296
Book Description
This textbook offers a unique introduction to classical Galois theory through many concrete examples and exercises of varying difficulty (including computer-assisted exercises). In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading. A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.