Author: Dennis A. Hejhal
Publisher: Springer
ISBN: 3540409149
Category : Mathematics
Languages : en
Pages : 815
Book Description
The Selberg Trace Formula for PSL (2,R)
Author: Dennis A. Hejhal
Publisher: Springer
ISBN: 3540409149
Category : Mathematics
Languages : en
Pages : 815
Book Description
Publisher: Springer
ISBN: 3540409149
Category : Mathematics
Languages : en
Pages : 815
Book Description
The Selberg Trace Formula for PSL (2, IR)
Author: Dennis A. Hejhal
Publisher:
ISBN:
Category : Automorphic forms
Languages : en
Pages : 544
Book Description
Publisher:
ISBN:
Category : Automorphic forms
Languages : en
Pages : 544
Book Description
The Selberg Trace Formula for PSL (2, IR)
Author: Dennis A. Hejhal
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 742
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 742
Book Description
The Selberg Trace Formula for PSL(2,R)
Author: Dennis A. Hejhal
Publisher:
ISBN:
Category : Selberg trace formula
Languages : en
Pages : 806
Book Description
Publisher:
ISBN:
Category : Selberg trace formula
Languages : en
Pages : 806
Book Description
The Selberg Trace Formula for Psl (2, R)
Author: Dennis A. Hejhal
Publisher:
ISBN: 9783662195222
Category :
Languages : en
Pages : 528
Book Description
Publisher:
ISBN: 9783662195222
Category :
Languages : en
Pages : 528
Book Description
An Approach to the Selberg Trace Formula via the Selberg Zeta-Function
Author: Jürgen Fischer
Publisher: Springer
ISBN: 3540393315
Category : Mathematics
Languages : en
Pages : 188
Book Description
The Notes give a direct approach to the Selberg zeta-function for cofinite discrete subgroups of SL (2,#3) acting on the upper half-plane. The basic idea is to compute the trace of the iterated resolvent kernel of the hyperbolic Laplacian in order to arrive at the logarithmic derivative of the Selberg zeta-function. Previous knowledge of the Selberg trace formula is not assumed. The theory is developed for arbitrary real weights and for arbitrary multiplier systems permitting an approach to known results on classical automorphic forms without the Riemann-Roch theorem. The author's discussion of the Selberg trace formula stresses the analogy with the Riemann zeta-function. For example, the canonical factorization theorem involves an analogue of the Euler constant. Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function. Apart from the basic spectral theory of the Laplacian for cofinite groups the book is self-contained and will be useful as a quick approach to the Selberg zeta-function and the Selberg trace formula.
Publisher: Springer
ISBN: 3540393315
Category : Mathematics
Languages : en
Pages : 188
Book Description
The Notes give a direct approach to the Selberg zeta-function for cofinite discrete subgroups of SL (2,#3) acting on the upper half-plane. The basic idea is to compute the trace of the iterated resolvent kernel of the hyperbolic Laplacian in order to arrive at the logarithmic derivative of the Selberg zeta-function. Previous knowledge of the Selberg trace formula is not assumed. The theory is developed for arbitrary real weights and for arbitrary multiplier systems permitting an approach to known results on classical automorphic forms without the Riemann-Roch theorem. The author's discussion of the Selberg trace formula stresses the analogy with the Riemann zeta-function. For example, the canonical factorization theorem involves an analogue of the Euler constant. Finally the general Selberg trace formula is deduced easily from the properties of the Selberg zeta-function: this is similar to the procedure in analytic number theory where the explicit formulae are deduced from the properties of the Riemann zeta-function. Apart from the basic spectral theory of the Laplacian for cofinite groups the book is self-contained and will be useful as a quick approach to the Selberg zeta-function and the Selberg trace formula.
The Selberg Trace Formula for PSL_2(R)^n
Author: Isaac Y. Efrat
Publisher: American Mathematical Soc.
ISBN: 0821824244
Category : Mathematics
Languages : en
Pages : 121
Book Description
We evaluate the Selberg trace formula for all discrete, irreducible, cofinite subgroups of PSL2 ([double-struck capital]R)[italic superscript]n. In particular, this involves studying the spectral theory of the fundamental domain, and the analysis of the appropriate Eisenstein series. A special role is played by the Hilbert modular groups, both because of their relation to the general case, stemming from a rigidity theorem, and their inherent algebraic number theoretic interest.
Publisher: American Mathematical Soc.
ISBN: 0821824244
Category : Mathematics
Languages : en
Pages : 121
Book Description
We evaluate the Selberg trace formula for all discrete, irreducible, cofinite subgroups of PSL2 ([double-struck capital]R)[italic superscript]n. In particular, this involves studying the spectral theory of the fundamental domain, and the analysis of the appropriate Eisenstein series. A special role is played by the Hilbert modular groups, both because of their relation to the general case, stemming from a rigidity theorem, and their inherent algebraic number theoretic interest.
Path Integrals, Hyperbolic Spaces and Selberg Trace Formulae
Author: Christian Grosche
Publisher: World Scientific
ISBN: 9814460087
Category : Mathematics
Languages : en
Pages : 389
Book Description
In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.
Publisher: World Scientific
ISBN: 9814460087
Category : Mathematics
Languages : en
Pages : 389
Book Description
In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition. The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition. In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.
Graph Theory Singapore 1983
Author: K.M. Koh
Publisher: Springer
ISBN: 3540389245
Category : Mathematics
Languages : en
Pages : 354
Book Description
Publisher: Springer
ISBN: 3540389245
Category : Mathematics
Languages : en
Pages : 354
Book Description
Manifolds and Lie Groups
Author: J. Hano
Publisher: Springer Science & Business Media
ISBN: 1461259878
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgins 30 B. Smyth 4 A. Borel, Institute for Michigan State University 45 J. Curry Advanced Study 18 S. Harris, 31 A. Pradhan 46 D. Norris 32 R. Escobales, 5 Y. Matsushima University of Missouri 47 J. Spellecy Canisius College 6 Mrs. Matsushima 19 J. Beem, 48 M. Clancy 7 K. Nomizu, University of Missouri 33 L. Smiley 49 J. Rabinowitz, University 20 D. Collins, 34 C.H. Sung Brown University of Illinois at Chicago Valparaiso University 35 M. Markowitz 8 J.-1. Hano, 50 R. Richardson, Australian Washington University 36 A. Sommese 21 I. Satake, University of National University California at Berkeley 37 A. Vitter, 9 J. Carrell, University of 51 D. Lieberman, 22 H.
Publisher: Springer Science & Business Media
ISBN: 1461259878
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B.Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgins 30 B. Smyth 4 A. Borel, Institute for Michigan State University 45 J. Curry Advanced Study 18 S. Harris, 31 A. Pradhan 46 D. Norris 32 R. Escobales, 5 Y. Matsushima University of Missouri 47 J. Spellecy Canisius College 6 Mrs. Matsushima 19 J. Beem, 48 M. Clancy 7 K. Nomizu, University of Missouri 33 L. Smiley 49 J. Rabinowitz, University 20 D. Collins, 34 C.H. Sung Brown University of Illinois at Chicago Valparaiso University 35 M. Markowitz 8 J.-1. Hano, 50 R. Richardson, Australian Washington University 36 A. Sommese 21 I. Satake, University of National University California at Berkeley 37 A. Vitter, 9 J. Carrell, University of 51 D. Lieberman, 22 H.