The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1009020927
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning.

Principles and Labs for Deep Learning

Principles and Labs for Deep Learning PDF Author: Shih-Chia Huang
Publisher: Academic Press
ISBN: 0323901999
Category : Science
Languages : en
Pages : 366

Get Book Here

Book Description
Principles and Labs for Deep Learning provides the knowledge and techniques needed to help readers design and develop deep learning models. Deep Learning techniques are introduced through theory, comprehensively illustrated, explained through the TensorFlow source code examples, and analyzed through the visualization of results. The structured methods and labs provided by Dr. Huang and Dr. Le enable readers to become proficient in TensorFlow to build deep Convolutional Neural Networks (CNNs) through custom APIs, high-level Keras APIs, Keras Applications, and TensorFlow Hub. Each chapter has one corresponding Lab with step-by-step instruction to help the reader practice and accomplish a specific learning outcome. Deep Learning has been successfully applied in diverse fields such as computer vision, audio processing, robotics, natural language processing, bioinformatics and chemistry. Because of the huge scope of knowledge in Deep Learning, a lot of time is required to understand and deploy useful, working applications, hence the importance of this new resource. Both theory lessons and experiments are included in each chapter to introduce the techniques and provide source code examples to practice using them. All Labs for this book are placed on GitHub to facilitate the download. The book is written based on the assumption that the reader knows basic Python for programming and basic Machine Learning. - Introduces readers to the usefulness of neural networks and Deep Learning methods - Provides readers with in-depth understanding of the architecture and operation of Deep Convolutional Neural Networks - Demonstrates the visualization needed for designing neural networks - Provides readers with an in-depth understanding of regression problems, binary classification problems, multi-category classification problems, Variational Auto-Encoder, Generative Adversarial Network, and Object detection

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

TensorFlow for Deep Learning

TensorFlow for Deep Learning PDF Author: Bharath Ramsundar
Publisher: "O'Reilly Media, Inc."
ISBN: 1491980400
Category : Computers
Languages : en
Pages : 247

Get Book Here

Book Description
Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects in images, understanding text, analyzing video, and predicting the properties of potential medicines. TensorFlow for Deep Learning teaches concepts through practical examples and helps you build knowledge of deep learning foundations from the ground up. It’s ideal for practicing developers with experience designing software systems, and useful for scientists and other professionals familiar with scripting but not necessarily with designing learning algorithms. Learn TensorFlow fundamentals, including how to perform basic computation Build simple learning systems to understand their mathematical foundations Dive into fully connected deep networks used in thousands of applications Turn prototypes into high-quality models with hyperparameter optimization Process images with convolutional neural networks Handle natural language datasets with recurrent neural networks Use reinforcement learning to solve games such as tic-tac-toe Train deep networks with hardware including GPUs and tensor processing units

Geometry of Deep Learning

Geometry of Deep Learning PDF Author: Jong Chul Ye
Publisher: Springer Nature
ISBN: 9811660468
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.

Deep Learning Architectures

Deep Learning Architectures PDF Author: Ovidiu Calin
Publisher: Springer Nature
ISBN: 3030367215
Category : Mathematics
Languages : en
Pages : 768

Get Book Here

Book Description
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter. This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

The Deep Learning Revolution

The Deep Learning Revolution PDF Author: Terrence J. Sejnowski
Publisher: MIT Press
ISBN: 026203803X
Category : Computers
Languages : en
Pages : 354

Get Book Here

Book Description
How deep learning—from Google Translate to driverless cars to personal cognitive assistants—is changing our lives and transforming every sector of the economy. The deep learning revolution has brought us driverless cars, the greatly improved Google Translate, fluent conversations with Siri and Alexa, and enormous profits from automated trading on the New York Stock Exchange. Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy. Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

Deep Learning

Deep Learning PDF Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801

Get Book Here

Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Math and Architectures of Deep Learning

Math and Architectures of Deep Learning PDF Author: Krishnendu Chaudhury
Publisher: Simon and Schuster
ISBN: 1617296481
Category : Computers
Languages : en
Pages : 550

Get Book Here

Book Description
Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.