Author: Sir Nevill Francis Mott
Publisher: CUP Archive
ISBN: 0521071062
Category : Science
Languages : en
Pages : 454
Book Description
This advanced 1969 treatise was written by a team of international experts, and presents a definitive account of a major field of modern physics.
The Physics of Metals: Volume 1, Electrons
Author: Sir Nevill Francis Mott
Publisher: CUP Archive
ISBN: 0521071062
Category : Science
Languages : en
Pages : 454
Book Description
This advanced 1969 treatise was written by a team of international experts, and presents a definitive account of a major field of modern physics.
Publisher: CUP Archive
ISBN: 0521071062
Category : Science
Languages : en
Pages : 454
Book Description
This advanced 1969 treatise was written by a team of international experts, and presents a definitive account of a major field of modern physics.
Fundamentals of the Theory of Metals
Author: A. A. Abrikosov
Publisher: Courier Dover Publications
ISBN: 0486819019
Category : Science
Languages : en
Pages : 641
Book Description
This comprehensive primer by a Nobel Physicist covers the electronic spectra of metals, electrical and thermal conductivities, galvanomagnetic and thermoelectrical phenomena, the behavior of metals in high-frequency fields, sound absorption, and Fermi-liquid phenomena. Addressing in detail all aspects of the energy spectra of electrons in metals and the theory of superconductivity, it continues to be a valuable resource for the field almost thirty years after its initial publication. Targeted at undergraduate students majoring in physics as well as graduate and postgraduate students, research workers, and teachers, this is an essential reference on the topic of electromagnetism and superconductivity in metals. No special knowledge of metals beyond a course in general physics is needed, although the author does presume a knowledge of quantum mechanics and quantum statistics.
Publisher: Courier Dover Publications
ISBN: 0486819019
Category : Science
Languages : en
Pages : 641
Book Description
This comprehensive primer by a Nobel Physicist covers the electronic spectra of metals, electrical and thermal conductivities, galvanomagnetic and thermoelectrical phenomena, the behavior of metals in high-frequency fields, sound absorption, and Fermi-liquid phenomena. Addressing in detail all aspects of the energy spectra of electrons in metals and the theory of superconductivity, it continues to be a valuable resource for the field almost thirty years after its initial publication. Targeted at undergraduate students majoring in physics as well as graduate and postgraduate students, research workers, and teachers, this is an essential reference on the topic of electromagnetism and superconductivity in metals. No special knowledge of metals beyond a course in general physics is needed, although the author does presume a knowledge of quantum mechanics and quantum statistics.
The Theory of the Properties of Metals and Alloys
Author: Nevill Francis Mott
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 326
Book Description
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 326
Book Description
Introduction to the Theory of Liquid Metals
Author: T. E. Faber
Publisher: Cambridge University Press
ISBN: 9780521154499
Category : Science
Languages : en
Pages : 610
Book Description
This 1972 book brings together the results of a decade of research into the physics of liquid metals and alloys, a subject of growing interest to physicists, metallurgists and materials scientists at the time. It covers a wide range of phenomena, and for the benefit of newcomers to the field, Dr Faber provides a clear exposition of the physical properties involved, and the relevant theoretical arguments are developed in sufficient detail for an experimentalist who carries rather little in the way of mathematical equipment to follow them. Experienced researchers will appreciate Dr Faber's critical approach and the many previously unpublished results which he has included. The mass of experimental data which he has brought together and the comprehensive bibliography will make the book of great use to readers of both classes.
Publisher: Cambridge University Press
ISBN: 9780521154499
Category : Science
Languages : en
Pages : 610
Book Description
This 1972 book brings together the results of a decade of research into the physics of liquid metals and alloys, a subject of growing interest to physicists, metallurgists and materials scientists at the time. It covers a wide range of phenomena, and for the benefit of newcomers to the field, Dr Faber provides a clear exposition of the physical properties involved, and the relevant theoretical arguments are developed in sufficient detail for an experimentalist who carries rather little in the way of mathematical equipment to follow them. Experienced researchers will appreciate Dr Faber's critical approach and the many previously unpublished results which he has included. The mass of experimental data which he has brought together and the comprehensive bibliography will make the book of great use to readers of both classes.
The Crystal Chemistry and Physics of Metals and Alloys
Author: William Burton Pearson
Publisher: New York : Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 834
Book Description
Publisher: New York : Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 834
Book Description
Science, Technology and Applications of Metals in Additive Manufacturing
Author: Bhaskar Dutta
Publisher: Elsevier
ISBN: 0128166436
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Science, Technology and Applications of Metal Additive Manufacturing provides a holistic picture of metal Additive Manufacturing (AM) that encompasses the science, technology and applications for the use of metal AM. Users will find design aspects, various metal AM technologies commercially available, a focus on merits and demerits, implications for qualification and certification, applications, cost modeling of AM, and future directions. This book serves as an educational guide, providing a holistic picture of metal AM that encompasses science, technology and applications for the real-life use of metal AM. - Includes an overall understanding of metal additive manufacturing, Including steps involved (process flow) - Discusses available commercial metal AM technologies and their relative strengths and weaknesses - Reviews the process of qualification of AM parts, various applications, cost modeling, and the future directions of metal AM
Publisher: Elsevier
ISBN: 0128166436
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Science, Technology and Applications of Metal Additive Manufacturing provides a holistic picture of metal Additive Manufacturing (AM) that encompasses the science, technology and applications for the use of metal AM. Users will find design aspects, various metal AM technologies commercially available, a focus on merits and demerits, implications for qualification and certification, applications, cost modeling of AM, and future directions. This book serves as an educational guide, providing a holistic picture of metal AM that encompasses science, technology and applications for the real-life use of metal AM. - Includes an overall understanding of metal additive manufacturing, Including steps involved (process flow) - Discusses available commercial metal AM technologies and their relative strengths and weaknesses - Reviews the process of qualification of AM parts, various applications, cost modeling, and the future directions of metal AM
The Physics of Metals: Volume 2, Defects
Author: P. B. Hirsch
Publisher: Cambridge University Press
ISBN: 9780521113106
Category : Science
Languages : en
Pages : 0
Book Description
The Physics of Metals is an advanced treatise written by a team of experts. It presents an authoritative account of selected topics in a major field of modern physics and will prove indispensable to both experimental and theoretical solid state physicists and metallurgists seeking a clear explanation of the state of knowledge of the physical phenomena occurring in metals, without recourse to elaborate mathematics. The whole work was inspired by the desire to honour Sir Nevill Mott by writing an account of some of the topics treated in Mott and Jones's classic work The Theory of the Properties of Metals and Alloys.
Publisher: Cambridge University Press
ISBN: 9780521113106
Category : Science
Languages : en
Pages : 0
Book Description
The Physics of Metals is an advanced treatise written by a team of experts. It presents an authoritative account of selected topics in a major field of modern physics and will prove indispensable to both experimental and theoretical solid state physicists and metallurgists seeking a clear explanation of the state of knowledge of the physical phenomena occurring in metals, without recourse to elaborate mathematics. The whole work was inspired by the desire to honour Sir Nevill Mott by writing an account of some of the topics treated in Mott and Jones's classic work The Theory of the Properties of Metals and Alloys.
Magnetoresistance in Metals
Author: A. B. Pippard
Publisher: Cambridge University Press
ISBN: 0521326605
Category : Science
Languages : en
Pages : 270
Book Description
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
Publisher: Cambridge University Press
ISBN: 0521326605
Category : Science
Languages : en
Pages : 270
Book Description
First published in 1989, this book contained the first systematic account of magnetoresistance in metals, the study of which has provided solid-state physicists with much valuable information about electron motion in metals. The electrical resistance of a metal is usually changed when a magnetic field is applied to it; at low temperatures the change may be very large indeed and when magnetic breakdown is involved, very complex. Every metal behaves differently, and the effect is highly dependent on the direction of the field relative to the crystal axes. Quite apart from its usefulness for determining the Ferni surfaces of individual metals, the phenomenon presents many interesting problems in its own right; it is the phenomenon, rather than its applications, that Professor Pippard concentrates on in this book. The level of treatment is aimed at readers with a basic knowledge of undergraduate solid-state physics, and makes no great demand on mathematical ability. The text is copiously illustrated with real experimental results.
Fundamentals of Radiation Materials Science
Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014
Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014
Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.
Mechanical Properties of Metals
Author: C. W. Lung
Publisher: World Scientific
ISBN: 9789810226220
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.
Publisher: World Scientific
ISBN: 9789810226220
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.