Author: Patrick J. Keeling
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
The Origin and Evolution of Eukaryotes
Author: Patrick J. Keeling
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
Publisher:
ISBN: 9781621820284
Category : Science
Languages : en
Pages : 416
Book Description
All protists, fungi, animals, and plants on Earth are eukaryotes. Their cells possess membrane-bound organelles including a nucleus and mitochondria, distinct cytoskeletal features, and a unique chromosome structure that permits them to undergo mitosis or meiosis. The emergence of eukaryotic cells from prokaryotic ancestors about 2 billion years ago was a pivotal evolutionary transition in the history of life on Earth. But the change was abrupt, and few clues exist as to the nature of the intermediate stages. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines evolutionary scenarios that likely led to the emergence and rapid evolution of eukaryotes. Contributors review the mechanisms, timing, and consequences of endosymbiosis, as well as molecular and biochemical characteristics of archaea and bacteria that may have contributed to the first eukaryotic lineage. They explore all of the available evidence, including clues from the fossil record and comparative genomics, and formulate ideas about the origin of genomic characteristics (e.g., chromatin and introns) and specific cellular features (e.g., the endomembrane system) in eukaryotes. Topics such as the origins of multicellularity and sex are also covered. This volume includes discussion of multiple evolutionary models that warrant serious attention, as well as lively debate on some of the most contentious topics in the field. It will thus be fascinating reading for evolutionary biologists, cell and molecular biologists, paleobiologists, and all who are interested in the history of life on Earth.
Concepts of Biology
Author: Samantha Fowler
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Origin of Eukaryotic Cells
Author: Lynn Margulis
Publisher:
ISBN:
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Cells
Languages : en
Pages : 0
Book Description
The Origin of Eukaryotic Cells
Author: Betsey Dexter Dyer
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Science
Languages : en
Pages : 376
Book Description
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Science
Languages : en
Pages : 376
Book Description
Prokaryotology
Author: Sorin Sonea
Publisher: PUM
ISBN: 2760617564
Category : Reference
Languages : en
Pages : 107
Book Description
Prokaryotes are profoundly original, highly efficient microorganisms that have played a decisive role in the evolution of life on Earth. Although disjunct, taken together their cells form one global superorganism or biological system. One of the results of their non-Darwinian evolution has been the development of enormous diversity and bio-energetic variety. Prokaryotic cells possess standardized mechanisms for easy gene exchanges (lateral gene transfer) and they can behave like receiving and broadcasting stations for genetic material. Ultimately, the result is a global communication system based on the prokaryotic hereditary patrimony, by analogy, a two-billion-year-old world wide web for their benefit. Eukaryotes have evolved from the association of at least three complementary prokaryotic cells, and their subsequent development has been enriched and accelerated by symbioses with other prokaryotes. One of these symbioses was responsible for the origin of vascular plants which transformed vast sections of the continental surface of the Earth from deserts to areas with luxuriant, life-supporting vegetation. All forms of life on our planet are directly or indirectly sustained and enriched by the positive contribution of prokaryotes. Sorin Sonea and L�o G. Mathieu have been professors at the Department of Microbiology and Immunology (Faculty of Medicine) at the Universit� de Montr�al. They have long been advocates of the ideas presented in this book.
Publisher: PUM
ISBN: 2760617564
Category : Reference
Languages : en
Pages : 107
Book Description
Prokaryotes are profoundly original, highly efficient microorganisms that have played a decisive role in the evolution of life on Earth. Although disjunct, taken together their cells form one global superorganism or biological system. One of the results of their non-Darwinian evolution has been the development of enormous diversity and bio-energetic variety. Prokaryotic cells possess standardized mechanisms for easy gene exchanges (lateral gene transfer) and they can behave like receiving and broadcasting stations for genetic material. Ultimately, the result is a global communication system based on the prokaryotic hereditary patrimony, by analogy, a two-billion-year-old world wide web for their benefit. Eukaryotes have evolved from the association of at least three complementary prokaryotic cells, and their subsequent development has been enriched and accelerated by symbioses with other prokaryotes. One of these symbioses was responsible for the origin of vascular plants which transformed vast sections of the continental surface of the Earth from deserts to areas with luxuriant, life-supporting vegetation. All forms of life on our planet are directly or indirectly sustained and enriched by the positive contribution of prokaryotes. Sorin Sonea and L�o G. Mathieu have been professors at the Department of Microbiology and Immunology (Faculty of Medicine) at the Universit� de Montr�al. They have long been advocates of the ideas presented in this book.
Prebiotic Chemistry and the Origin of Life
Author: Anna Neubeck
Publisher: Springer Nature
ISBN: 3030810399
Category : Science
Languages : en
Pages : 303
Book Description
This book presents an overview of current views on the origin of life and its earliest evolution. Each chapter describes key processes, environments and transition on the long road from geochemistry and astrochemistry to biochemistry and finally to the ancestors of today ́s organisms. This book combines the bottom-up and the top-down approaches to life including the origin of key chemical and structural features of living cells and the nature of abiotic factors that shaped these features in primordial environments. The book provides an overview of the topic as well as its state of the art for graduate students and newcomers to the field. It also serves as a reference for researchers in origins of life on Earth and beyond.
Publisher: Springer Nature
ISBN: 3030810399
Category : Science
Languages : en
Pages : 303
Book Description
This book presents an overview of current views on the origin of life and its earliest evolution. Each chapter describes key processes, environments and transition on the long road from geochemistry and astrochemistry to biochemistry and finally to the ancestors of today ́s organisms. This book combines the bottom-up and the top-down approaches to life including the origin of key chemical and structural features of living cells and the nature of abiotic factors that shaped these features in primordial environments. The book provides an overview of the topic as well as its state of the art for graduate students and newcomers to the field. It also serves as a reference for researchers in origins of life on Earth and beyond.
Mitochondria and Anaerobic Energy Metabolism in Eukaryotes
Author: William F. Martin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110612410
Category : Science
Languages : en
Pages : 270
Book Description
Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110612410
Category : Science
Languages : en
Pages : 270
Book Description
Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.
Handbook of the Protists
Author: John M. Archibald
Publisher: Springer
ISBN: 9783319281476
Category : Science
Languages : en
Pages : 0
Book Description
Published in a modern, user-friendly format this fully revised and updated edition of The Handbook of Protoctista (1990) is the resource for those interested in the biology, diversity and evolution of eukaryotic microorganisms and their descendants, exclusive of animals, plants and fungi. With chapters written by leading researchers in the field, the content reflects the present state of knowledge of the cell and genome biology, evolutionary relationships and ecological/medical/economic importance each major group of protists, organized according to current protist systematics as informed by molecular phylogenetics and genomics.
Publisher: Springer
ISBN: 9783319281476
Category : Science
Languages : en
Pages : 0
Book Description
Published in a modern, user-friendly format this fully revised and updated edition of The Handbook of Protoctista (1990) is the resource for those interested in the biology, diversity and evolution of eukaryotic microorganisms and their descendants, exclusive of animals, plants and fungi. With chapters written by leading researchers in the field, the content reflects the present state of knowledge of the cell and genome biology, evolutionary relationships and ecological/medical/economic importance each major group of protists, organized according to current protist systematics as informed by molecular phylogenetics and genomics.
The Logic of Chance
Author: Eugene V. Koonin
Publisher: FT Press
ISBN: 013262317X
Category : Science
Languages : en
Pages : 530
Book Description
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
Publisher: FT Press
ISBN: 013262317X
Category : Science
Languages : en
Pages : 530
Book Description
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
Mitonuclear Ecology
Author: Geoffrey E. Hill
Publisher:
ISBN: 0198818254
Category : Science
Languages : en
Pages : 315
Book Description
This novel text provides a concise synthesis of how the interactions between mitochondrial and nuclear genes have played a major role in shaping the ecology and evolution of eukaryotes. The foundation for this new focus on mitonuclear interactions originated from research in biochemistry and cell biology laboratories, although the broader ecological and evolutionary implications have yet to be fully explored. The imperative for mitonuclear coadaptation is proposed to be a major selective force in the evolution of sexual reproduction and two mating types in eukaryotes, in the formation of species, in the evolution of ornaments and sexual selection, in the process of adaptation, and in the evolution of senescence. The book highlights the importance of mitonuclear coadaptation to the evolution of complex life and champions mitonuclear ecology as an important subdiscipline in ecology and evolution.
Publisher:
ISBN: 0198818254
Category : Science
Languages : en
Pages : 315
Book Description
This novel text provides a concise synthesis of how the interactions between mitochondrial and nuclear genes have played a major role in shaping the ecology and evolution of eukaryotes. The foundation for this new focus on mitonuclear interactions originated from research in biochemistry and cell biology laboratories, although the broader ecological and evolutionary implications have yet to be fully explored. The imperative for mitonuclear coadaptation is proposed to be a major selective force in the evolution of sexual reproduction and two mating types in eukaryotes, in the formation of species, in the evolution of ornaments and sexual selection, in the process of adaptation, and in the evolution of senescence. The book highlights the importance of mitonuclear coadaptation to the evolution of complex life and champions mitonuclear ecology as an important subdiscipline in ecology and evolution.