The Numerical Simulation of Turbulent Jets and Diffusion Flames

The Numerical Simulation of Turbulent Jets and Diffusion Flames PDF Author: Roelf Luppes
Publisher:
ISBN: 9789038625829
Category : Jets
Languages : en
Pages : 203

Get Book Here

Book Description

The Numerical Simulation of Turbulent Jets and Diffusion Flames

The Numerical Simulation of Turbulent Jets and Diffusion Flames PDF Author: Roelf Luppes
Publisher:
ISBN: 9789038625829
Category : Jets
Languages : en
Pages : 203

Get Book Here

Book Description


Mathematical Modelling and Numerical Simulations of Chemically Reacting Turbulent Jets

Mathematical Modelling and Numerical Simulations of Chemically Reacting Turbulent Jets PDF Author: Kian Mehravaran
Publisher:
ISBN:
Category : Chemical reactions
Languages : en
Pages : 352

Get Book Here

Book Description


Direct Numerical Simulation for Turbulent Reacting Flows

Direct Numerical Simulation for Turbulent Reacting Flows PDF Author: Thierry Baritaud
Publisher: Editions TECHNIP
ISBN: 9782710806981
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Modeling and Simulation of Turbulent Mixing and Reaction

Modeling and Simulation of Turbulent Mixing and Reaction PDF Author: Daniel Livescu
Publisher: Springer Nature
ISBN: 9811526435
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion PDF Author: Santanu De
Publisher: Springer
ISBN: 9811074100
Category : Science
Languages : en
Pages : 663

Get Book Here

Book Description
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion PDF Author: Heinz Pitsch
Publisher: Springer Nature
ISBN: 3030447189
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Study of Finite-Rate Chemistry Effects on Turbulent Jet Diffusion Flames and Non-homogeneous Autoigntion Using the One-Dimensional Turbulence Model

Study of Finite-Rate Chemistry Effects on Turbulent Jet Diffusion Flames and Non-homogeneous Autoigntion Using the One-Dimensional Turbulence Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In current study Numerical simulation of turbulent combustion process is approached using One Dimensional Turbulence (ODT) model. The ODT model is based on the coupling of molecular processes (reaction and diffusion) with turbulent transport in a spatially- and temporally-resolved fashion over a one-dimensional domain. The domain corresponds to a transverse (or radial) direction; while, the transient evolution of the thermo-chemical scalars on the 1D domain represents the spatial evolution downstream of the jet inlet. The linear-eddy approach for modeling molecular mixing in turbulent flow involves stochastic simulation on a 1D domain with sufficient resolution to predict all relevant physical length scales properly. Firstly ODT is carried out to predict the hydrogen and air jet diffusion flame with helium dilution in the fuel. The comparison with existing experimental data was made for the numerical result of ODT simulation of jet diffusion flames in both conditional means and rms of scalars of measurements and computational results. Another application of ODT was made in present work to verify the capability of prediction of autoignition (self-ignition) of one of free shear layer flow -- jet diffusion flow. Different range of pressure and Reynolds number are set to identify the effects of turbulence intensity and mixture properties on the self-ignition chemistry. Autoignition delay time was studied based on these different conditions. At the same time the ability of the prediction of mixture temperature and species mass fraction profile were tested. A principle numerical result is expected and discussed. Conditional pdf and progress variable were used to analyze the computational result of ODT. Analysis was focus on the temperature growth and the mass fraction distribution of intermediate species and product.

Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Simulation of Flame Stabilization of Lifted Turbulent Jet Diffusion Flames

Simulation of Flame Stabilization of Lifted Turbulent Jet Diffusion Flames PDF Author: Ming Chen
Publisher:
ISBN: 9783896536587
Category : Turbulence
Languages : en
Pages : 179

Get Book Here

Book Description