The Nonlinear Quantum Field Theory as a Generalization of Standard Model (geometrical Approach)

The Nonlinear Quantum Field Theory as a Generalization of Standard Model (geometrical Approach) PDF Author: Alexander G. Kyriakos
Publisher: AKVY PRESS
ISBN: 0980966744
Category : Quantum field theory
Languages : en
Pages : 164

Get Book Here

Book Description
The author proposes a special nonlinear quantum field theory. In a linear approximation, this theory can be presented in the form of the Standard Model (SM) theory. The richer physical structure of this nonlinear theory makes it possible to exceed the limits of SM and remove its known incompleteness. We show that nonlinearity of the field is critical for the appearance of charges and masses of elementary particles, for confinement of quarks, and many other effects, whose description within the framework of SM causes difficulties. In this case, the mechanism of generation of masses is mathematically similar to Higgs's mechanism, but it is considerably simpler and does not include the additional particles. The proposed theory does not examine the theory of gravity, but reveals the mathematical similarity of the nonlinear field equations of both theories. The book is intended for undergraduate and graduate students studying the theory of elementary particles, as well as for specialists working in this field.

The Nonlinear Quantum Field Theory as a Generalization of Standard Model (geometrical Approach)

The Nonlinear Quantum Field Theory as a Generalization of Standard Model (geometrical Approach) PDF Author: Alexander G. Kyriakos
Publisher: AKVY PRESS
ISBN: 0980966744
Category : Quantum field theory
Languages : en
Pages : 164

Get Book Here

Book Description
The author proposes a special nonlinear quantum field theory. In a linear approximation, this theory can be presented in the form of the Standard Model (SM) theory. The richer physical structure of this nonlinear theory makes it possible to exceed the limits of SM and remove its known incompleteness. We show that nonlinearity of the field is critical for the appearance of charges and masses of elementary particles, for confinement of quarks, and many other effects, whose description within the framework of SM causes difficulties. In this case, the mechanism of generation of masses is mathematically similar to Higgs's mechanism, but it is considerably simpler and does not include the additional particles. The proposed theory does not examine the theory of gravity, but reveals the mathematical similarity of the nonlinear field equations of both theories. The book is intended for undergraduate and graduate students studying the theory of elementary particles, as well as for specialists working in this field.

Quantum Field Theory II

Quantum Field Theory II PDF Author: Edouard B. Manoukian
Publisher: Springer
ISBN: 3319338528
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell’s Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.

Quantum Mechanics, Quantum Field Theory

Quantum Mechanics, Quantum Field Theory PDF Author: R. Mirman
Publisher: Nova Publishers
ISBN: 9781560729914
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
Excision of errors and confusion about quantum mechanics -- and stimulation of thoughtful and adventurous readers are pre-eminent rationales of this entire work; these requiring definitions and analysis of underlying concepts of quantum mechanics, of quantum field theory -- why probability is given by the absolute square, what wavefunctions are and are not and why, and many others -- and also examination of some from the philosophy of science. People's beliefs about quantum mechanics are often just the reverse of what fundamental principles give, seen most spectacularly with the EPR 'paradox'. The puzzles, the mystical, the bizarre, come merely from negligence, from blunders, including the outlandish belief that the universe must be explained using classical physics. Careless, unthinking physicists, and gullible journalists who naively accept their confusion as statements about nature, cause so much misunderstanding and nonsense about physics. Among the many examples considered are the non-existence in quantum mechanics of waves and particles, so of wave-particle duality; the reason that general relativity must be the quantum theory of gravity; the mystery of the cosmological constant: why people believe in it though it would be obvious to a high school student that there cannot be any, it must be zero; the absurdity (and wild incorrectness) of much of the discussion about the vacuum; the required locality of quantum mechanics and the impossibility of action-at-a-distance; and many others. Many blunders, not only about physics, come from abuse of language, the use of words, phrases, sentences without content, with con- notation but no denotation, of names --- quantum mechanics, particles, waves, and so on -- that deceive and misrepresent, of questions that ask nothing. It is not only in physics that answers to questions without meaning smother and hide.

Quantum Non-linear Sigma-Models

Quantum Non-linear Sigma-Models PDF Author: Sergei V. Ketov
Publisher: Springer Science & Business Media
ISBN: 9783540674610
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
Offers a systematic presentation of the modern quantum field theory of non-linear sigma-models. These models are very popular in theoretical high energy physics, string theory, and statistical physics. The geometric and quantum renormalization properties of the most general non-linear sigma-models are considered in detail within the framework of quantum perturbation theory. The main applications to be considered in the book can be found in string theory, conformal field theory, and general relativity.

Nonperturbative Quantum Field Theory and the Structure of Matter

Nonperturbative Quantum Field Theory and the Structure of Matter PDF Author: T. Borne
Publisher: Springer Science & Business Media
ISBN: 9781402003547
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works. The first part contains a new nonperturbative regularization and probability interpretation, as well as a new treatment of effective dynamics for quantum fields based on algebraic representation theory in functional spaces. In the second part these methods are applied to selected topics in high energy physics. In a generalization of de Broglie's fusion theory, gauge bosons and fermions are considered as composites and the basic dynamics of the electro-weak sector of the standard model is derived as an effective theory from a regularized spinor fields model. Linear gravity is discussed in the same way. Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be of interest to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed matter physics, and relativity.

Quantum Field Theory and the Standard Model

Quantum Field Theory and the Standard Model PDF Author: Matthew D. Schwartz
Publisher: Cambridge University Press
ISBN: 1107034736
Category : Science
Languages : en
Pages : 869

Get Book Here

Book Description
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.

Path Integrals in Physics

Path Integrals in Physics PDF Author: M Chaichian
Publisher: CRC Press
ISBN: 9780750308021
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.

Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)

Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes) PDF Author: Gerhard Grensing
Publisher: World Scientific
ISBN: 9811237093
Category : Science
Languages : en
Pages : 1656

Get Book Here

Book Description
The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.

Quantum Field Theory Approach to Condensed Matter Physics

Quantum Field Theory Approach to Condensed Matter Physics PDF Author: Eduardo C. Marino
Publisher: Cambridge University Press
ISBN: 1107074118
Category : Science
Languages : en
Pages : 537

Get Book Here

Book Description
Independent electrons and static crystals -- Vibrating crystals -- Interacting electrons -- Interactions in action -- Functional formulation of quantum field theory -- Quantum fields in action -- Symmetries: explicit or secret -- Classical topological excitations -- Quantum topological excitations -- Duality, bosonization and generalized statistics -- Statistical transmutation -- Pseudo quantum electrodynamics -- Quantum field theory methods in condensed matter -- Metals, Fermi liquids, Mott and Anderson insulators -- The dynamics of polarons -- Polyacetylene -- The Kondo effect -- Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that' -- Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that' -- The spin-fermion system: a quantum field theory approach -- The spin glass -- Quantum field theory approach to superfluidity -- Quantum field theory approach to superconductivity -- The cuprate high-temperature superconductors -- The pnictides: iron based superconductors -- The quantum Hall effect -- Graphene -- Silicene and transition metal dichalcogenides -- Topological insulators -- Non-abelian statistics and quantum computation

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Geometric, Algebraic and Topological Methods for Quantum Field Theory PDF Author: Sylvie Payche
Publisher: World Scientific
ISBN: 9814460052
Category : Science
Languages : en
Pages : 378

Get Book Here

Book Description
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.