Author: Sherif El-Helaly
Publisher: Springer
ISBN: 3030147681
Category : Mathematics
Languages : en
Pages : 275
Book Description
This textbook contains a rigorous exposition of the mathematical foundations of two of the most important topics in politics and economics: voting and apportionment, at the level of upper undergraduate and beginning graduate students. It stands out among comparable books by providing, in one volume, an extensive and mathematically rigorous treatment of these two topics. The text’s three chapters cover social choice, yes-no voting, and apportionment, respectively, and can be covered in any order, allowing teachers ample flexibility. Each chapter begins with an elementary introduction and several examples to motivate the concepts and to gradually lead to more advanced material. Landmark theorems are presented with detailed and streamlined proofs; those requiring more complex proofs, such as Arrow’s theorems on dictatorship, Gibbard’s theorem on oligarchy, and Gärdenfors’ theorem on manipulation, are broken down into propositions and lemmas in order to make them easier to grasp. Simple and intuitive notations are emphasized over non-standard, overly complicated symbols. Additionally, each chapter ends with exercises that vary from computational to “prove or disprove” types. The Mathematics of Voting and Apportionment will be particularly well-suited for a course in the mathematics of voting and apportionment for upper-level undergraduate and beginning graduate students in economics, political science, or philosophy, or for an elective course for math majors. In addition, this book will be a suitable read for to any curious mathematician looking for an exposition to these unpublicized mathematical applications. No political science prerequisites are needed. Mathematical prerequisites (included in the book) are minimal: elementary concepts in combinatorics, graph theory, order relations, and the harmonic and geometric means. What is needed most is the level of maturity that enables the student to think logically, derive results from axioms and hypotheses, and intuitively grasp logical notions such as “contrapositive” and “counterexample.”
The Mathematics of Voting and Apportionment
Author: Sherif El-Helaly
Publisher: Springer
ISBN: 3030147681
Category : Mathematics
Languages : en
Pages : 275
Book Description
This textbook contains a rigorous exposition of the mathematical foundations of two of the most important topics in politics and economics: voting and apportionment, at the level of upper undergraduate and beginning graduate students. It stands out among comparable books by providing, in one volume, an extensive and mathematically rigorous treatment of these two topics. The text’s three chapters cover social choice, yes-no voting, and apportionment, respectively, and can be covered in any order, allowing teachers ample flexibility. Each chapter begins with an elementary introduction and several examples to motivate the concepts and to gradually lead to more advanced material. Landmark theorems are presented with detailed and streamlined proofs; those requiring more complex proofs, such as Arrow’s theorems on dictatorship, Gibbard’s theorem on oligarchy, and Gärdenfors’ theorem on manipulation, are broken down into propositions and lemmas in order to make them easier to grasp. Simple and intuitive notations are emphasized over non-standard, overly complicated symbols. Additionally, each chapter ends with exercises that vary from computational to “prove or disprove” types. The Mathematics of Voting and Apportionment will be particularly well-suited for a course in the mathematics of voting and apportionment for upper-level undergraduate and beginning graduate students in economics, political science, or philosophy, or for an elective course for math majors. In addition, this book will be a suitable read for to any curious mathematician looking for an exposition to these unpublicized mathematical applications. No political science prerequisites are needed. Mathematical prerequisites (included in the book) are minimal: elementary concepts in combinatorics, graph theory, order relations, and the harmonic and geometric means. What is needed most is the level of maturity that enables the student to think logically, derive results from axioms and hypotheses, and intuitively grasp logical notions such as “contrapositive” and “counterexample.”
Publisher: Springer
ISBN: 3030147681
Category : Mathematics
Languages : en
Pages : 275
Book Description
This textbook contains a rigorous exposition of the mathematical foundations of two of the most important topics in politics and economics: voting and apportionment, at the level of upper undergraduate and beginning graduate students. It stands out among comparable books by providing, in one volume, an extensive and mathematically rigorous treatment of these two topics. The text’s three chapters cover social choice, yes-no voting, and apportionment, respectively, and can be covered in any order, allowing teachers ample flexibility. Each chapter begins with an elementary introduction and several examples to motivate the concepts and to gradually lead to more advanced material. Landmark theorems are presented with detailed and streamlined proofs; those requiring more complex proofs, such as Arrow’s theorems on dictatorship, Gibbard’s theorem on oligarchy, and Gärdenfors’ theorem on manipulation, are broken down into propositions and lemmas in order to make them easier to grasp. Simple and intuitive notations are emphasized over non-standard, overly complicated symbols. Additionally, each chapter ends with exercises that vary from computational to “prove or disprove” types. The Mathematics of Voting and Apportionment will be particularly well-suited for a course in the mathematics of voting and apportionment for upper-level undergraduate and beginning graduate students in economics, political science, or philosophy, or for an elective course for math majors. In addition, this book will be a suitable read for to any curious mathematician looking for an exposition to these unpublicized mathematical applications. No political science prerequisites are needed. Mathematical prerequisites (included in the book) are minimal: elementary concepts in combinatorics, graph theory, order relations, and the harmonic and geometric means. What is needed most is the level of maturity that enables the student to think logically, derive results from axioms and hypotheses, and intuitively grasp logical notions such as “contrapositive” and “counterexample.”
The Mathematics of Elections and Voting
Author: W.D. Wallis
Publisher: Springer
ISBN: 3319098101
Category : Mathematics
Languages : en
Pages : 103
Book Description
This title takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet’s Principle and Arrow’s Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life. Few books have studied voting and elections from a more formal mathematical viewpoint. This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections.
Publisher: Springer
ISBN: 3319098101
Category : Mathematics
Languages : en
Pages : 103
Book Description
This title takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet’s Principle and Arrow’s Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life. Few books have studied voting and elections from a more formal mathematical viewpoint. This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections.
The Mathematics of Voting and Elections
Author: Jonathan K. Hodge
Publisher: American Mathematical Soc.
ISBN: 0821837982
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Mathematics of Voting and Elections: A Hands-on Approach will help you discover answers to these and many other questions. Easily accessible to anyone interested in the subject, the book requires virtually no prior mathematical experience beyond basic arithmetic, and includes numerous examples and discussions regarding actual elections from politics and popular culture.
Publisher: American Mathematical Soc.
ISBN: 0821837982
Category : Mathematics
Languages : en
Pages : 242
Book Description
The Mathematics of Voting and Elections: A Hands-on Approach will help you discover answers to these and many other questions. Easily accessible to anyone interested in the subject, the book requires virtually no prior mathematical experience beyond basic arithmetic, and includes numerous examples and discussions regarding actual elections from politics and popular culture.
Numbers Rule
Author: George Szpiro
Publisher: Princeton University Press
ISBN: 0691209081
Category : History
Languages : en
Pages : 240
Book Description
The author takes the general reader on a tour of the mathematical puzzles and paradoxes inherent in voting systems, such as the Alabama Paradox, in which an increase in the number of seats in the Congress could actually lead to a reduced number of representatives for a state, and the Condorcet Paradox, which demonstrates that the winner of elections featuring more than two candidates does not necessarily reflect majority preferences. Szpiro takes a roughly chronological approach to the topic, traveling from ancient Greece to the present and, in addition to offering explanations of the various mathematical conundrums of elections and voting, also offers biographical details on the mathematicians and other thinkers who thought about them, including Plato, Pliny the Younger, Pierre Simon Laplace, Thomas Jefferson, John von Neumann, and Kenneth Arrow.
Publisher: Princeton University Press
ISBN: 0691209081
Category : History
Languages : en
Pages : 240
Book Description
The author takes the general reader on a tour of the mathematical puzzles and paradoxes inherent in voting systems, such as the Alabama Paradox, in which an increase in the number of seats in the Congress could actually lead to a reduced number of representatives for a state, and the Condorcet Paradox, which demonstrates that the winner of elections featuring more than two candidates does not necessarily reflect majority preferences. Szpiro takes a roughly chronological approach to the topic, traveling from ancient Greece to the present and, in addition to offering explanations of the various mathematical conundrums of elections and voting, also offers biographical details on the mathematicians and other thinkers who thought about them, including Plato, Pliny the Younger, Pierre Simon Laplace, Thomas Jefferson, John von Neumann, and Kenneth Arrow.
Mathematics to the Rescue of Democracy
Author: Paolo Serafini
Publisher: Springer Nature
ISBN: 3030383687
Category : Mathematics
Languages : en
Pages : 138
Book Description
This book explains, in a straightforward way, the foundations upon which electoral techniques are based in order to shed new light on what we actually do when we vote. The intention is to highlight the fact that no matter how an electoral system has been designed, and regardless of the intentions of those who devised the system, there will be goals that are impossible to achieve but also opportunities for improving the situation in an informed way. While detailed descriptions of electoral systems are not provided, many references are made to current or past situations, both as examples and to underline particular problems and shortcomings. In addition, a new voting method that avoids the many paradoxes of voting theory is described in detail. While some knowledge of mathematics is required in order to gain the most from the book, every effort has been made to ensure that the subject matter is easily accessible for non-mathematicians, too. In short, this is a book for anyone who wants to understand the meaning of voting.
Publisher: Springer Nature
ISBN: 3030383687
Category : Mathematics
Languages : en
Pages : 138
Book Description
This book explains, in a straightforward way, the foundations upon which electoral techniques are based in order to shed new light on what we actually do when we vote. The intention is to highlight the fact that no matter how an electoral system has been designed, and regardless of the intentions of those who devised the system, there will be goals that are impossible to achieve but also opportunities for improving the situation in an informed way. While detailed descriptions of electoral systems are not provided, many references are made to current or past situations, both as examples and to underline particular problems and shortcomings. In addition, a new voting method that avoids the many paradoxes of voting theory is described in detail. While some knowledge of mathematics is required in order to gain the most from the book, every effort has been made to ensure that the subject matter is easily accessible for non-mathematicians, too. In short, this is a book for anyone who wants to understand the meaning of voting.
Proportional Representation
Author: Friedrich Pukelsheim
Publisher: Springer
ISBN: 3319647075
Category : Mathematics
Languages : en
Pages : 350
Book Description
The book offers an in-depth study of the translation of vote counts into seat numbers in proportional representation systems – an approach guided by practical needs. It also provides plenty of empirical instances illustrating the results. It analyzes in detail the 2014 elections to the European Parliament in the 28 member states, as well as the 2009 and 2013 elections to the German Bundestag. This second edition is a complete revision and expanded version of the first edition published in 2014, and many empirical election results that serve as examples have been updated. Further, a final chapter has been added assembling biographical sketches and authoritative quotes from individuals who pioneered the development of apportionment methodology. The mathematical exposition and the interrelations with political science and constitutional jurisprudence make this an apt resource for interdisciplinary courses and seminars on electoral systems and apportionment methods.
Publisher: Springer
ISBN: 3319647075
Category : Mathematics
Languages : en
Pages : 350
Book Description
The book offers an in-depth study of the translation of vote counts into seat numbers in proportional representation systems – an approach guided by practical needs. It also provides plenty of empirical instances illustrating the results. It analyzes in detail the 2014 elections to the European Parliament in the 28 member states, as well as the 2009 and 2013 elections to the German Bundestag. This second edition is a complete revision and expanded version of the first edition published in 2014, and many empirical election results that serve as examples have been updated. Further, a final chapter has been added assembling biographical sketches and authoritative quotes from individuals who pioneered the development of apportionment methodology. The mathematical exposition and the interrelations with political science and constitutional jurisprudence make this an apt resource for interdisciplinary courses and seminars on electoral systems and apportionment methods.
Mathematics of Social Choice
Author: Christoph Borgers
Publisher: SIAM
ISBN: 0898717620
Category : Political Science
Languages : en
Pages : 233
Book Description
Mathematics of Social Choice is a fun and accessible book that looks at the choices made by groups of people with different preferences, needs, and interests. Divided into three parts, the text first examines voting methods for selecting or ranking candidates. A brief second part addresses compensation problems wherein an indivisible item must be assigned to one of several people who are equally entitled to ownership of the item, with monetary compensation paid to the others. The third part discusses the problem of sharing a divisible resource among several people. Mathematics of Social Choice can be used by undergraduates studying mathematics and students whose only mathematical background is elementary algebra. More advanced material can be skipped without any loss of continuity. The book can also serve as an easy introduction to topics such as the Gibbard-Satterthwaite theorem, Arrow's theorem, and fair division for readers with more mathematical background.
Publisher: SIAM
ISBN: 0898717620
Category : Political Science
Languages : en
Pages : 233
Book Description
Mathematics of Social Choice is a fun and accessible book that looks at the choices made by groups of people with different preferences, needs, and interests. Divided into three parts, the text first examines voting methods for selecting or ranking candidates. A brief second part addresses compensation problems wherein an indivisible item must be assigned to one of several people who are equally entitled to ownership of the item, with monetary compensation paid to the others. The third part discusses the problem of sharing a divisible resource among several people. Mathematics of Social Choice can be used by undergraduates studying mathematics and students whose only mathematical background is elementary algebra. More advanced material can be skipped without any loss of continuity. The book can also serve as an easy introduction to topics such as the Gibbard-Satterthwaite theorem, Arrow's theorem, and fair division for readers with more mathematical background.
Mathematics and Politics
Author: Alan D. Taylor
Publisher: Springer Science & Business Media
ISBN: 0387776435
Category : Social Science
Languages : en
Pages : 378
Book Description
As a text for an undergraduate mathematics course for nonmajors, Mathematics and Politics requires no prerequisites in either area while the underlying philosophy involves minimizing algebraic computations and focusing instead on some conceptual aspects of mathematics in the context of important real-world questions in political science. Five major topics are covered including a model of escalation, game theoretic models of international conflict, yes-no voting systems, political power, and social choice. Each topic is discussed in an introductory chapter and revisited in more depth in a later chapter. This new edition has added co-author, Allison Pacelli, and two new chapters on "Fairness" and "More Fairness." The examples and the exercises have been updated and enhanced throughout. Reviews from first edition: This book is well written and has much math of interest. While it is pitched at a non-math audience there is material here that will be new and interesting to the readers... -Sigact News For mathematicians, Taylor's book shows how the social sciences make use of mathematical thinking, in the form of axiomatic systems, and offers a chance to teach this kind of thinking to our students. - The College Mathematics Journal The writing is crisp and the sense of excitement about learning mathematics is seductive. The political conflict examples are well thought out and clear. -Michael C. Munger
Publisher: Springer Science & Business Media
ISBN: 0387776435
Category : Social Science
Languages : en
Pages : 378
Book Description
As a text for an undergraduate mathematics course for nonmajors, Mathematics and Politics requires no prerequisites in either area while the underlying philosophy involves minimizing algebraic computations and focusing instead on some conceptual aspects of mathematics in the context of important real-world questions in political science. Five major topics are covered including a model of escalation, game theoretic models of international conflict, yes-no voting systems, political power, and social choice. Each topic is discussed in an introductory chapter and revisited in more depth in a later chapter. This new edition has added co-author, Allison Pacelli, and two new chapters on "Fairness" and "More Fairness." The examples and the exercises have been updated and enhanced throughout. Reviews from first edition: This book is well written and has much math of interest. While it is pitched at a non-math audience there is material here that will be new and interesting to the readers... -Sigact News For mathematicians, Taylor's book shows how the social sciences make use of mathematical thinking, in the form of axiomatic systems, and offers a chance to teach this kind of thinking to our students. - The College Mathematics Journal The writing is crisp and the sense of excitement about learning mathematics is seductive. The political conflict examples are well thought out and clear. -Michael C. Munger
Math in Society
Author: David Lippman
Publisher:
ISBN: 9781479276530
Category : Electronic books
Languages : en
Pages : 0
Book Description
Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well.
Publisher:
ISBN: 9781479276530
Category : Electronic books
Languages : en
Pages : 0
Book Description
Math in Society is a survey of contemporary mathematical topics, appropriate for a college-level topics course for liberal arts major, or as a general quantitative reasoning course.This book is an open textbook; it can be read free online at http://www.opentextbookstore.com/mathinsociety/. Editable versions of the chapters are available as well.
Basic Geometry of Voting
Author: Donald G. Saari
Publisher: Springer Science & Business Media
ISBN: 9783540600640
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Amazingly, the complexities of voting theory can be explained and resolved with comfortable geometry. A geometry which unifies such seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court. Although directed mainly toward students and others wishing to learn about voting, experts will discover here many previously unpublished results. As an example, a new profile decomposition quickly resolves the age-old controversies of Condorcet and Borda, demonstrates that the rankings of pairwise and other methods differ because they rely on different information, casts serious doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples.
Publisher: Springer Science & Business Media
ISBN: 9783540600640
Category : Business & Economics
Languages : en
Pages : 324
Book Description
Amazingly, the complexities of voting theory can be explained and resolved with comfortable geometry. A geometry which unifies such seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court. Although directed mainly toward students and others wishing to learn about voting, experts will discover here many previously unpublished results. As an example, a new profile decomposition quickly resolves the age-old controversies of Condorcet and Borda, demonstrates that the rankings of pairwise and other methods differ because they rely on different information, casts serious doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow's Theorem predictable, and simplifies the construction of examples.