Author: Gregory L. Naber
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
The Geometry of Minkowski Spacetime
Author: Gregory L. Naber
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
Publisher: Courier Corporation
ISBN: 9780486432359
Category : Mathematics
Languages : en
Pages : 276
Book Description
This mathematically rigorous treatment examines Zeeman's characterization of the causal automorphisms of Minkowski spacetime and the Penrose theorem concerning the apparent shape of a relativistically moving sphere. Other topics include the construction of a geometric theory of the electromagnetic field; an in-depth introduction to the theory of spinors; and a classification of electromagnetic fields in both tensor and spinor form. Appendixes introduce a topology for Minkowski spacetime and discuss Dirac's famous "Scissors Problem." Appropriate for graduate-level courses, this text presumes only a knowledge of linear algebra and elementary point-set topology. 1992 edition. 43 figures.
The Geometry of Minkowski Spacetime
Author: Gregory L. Naber
Publisher: Springer
ISBN: 9781441931023
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: “... a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993) “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993) “... his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)
Publisher: Springer
ISBN: 9781441931023
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman’s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac’s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: “... a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics.” (American Mathematical Society, 1993) “Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations.” (CHOICE, 1993) “... his talent in choosing the most significant results and ordering them within the book can’t be denied. The reading of the book is, really, a pleasure.” (Dutch Mathematical Society, 1993)
The Global Nonlinear Stability of the Minkowski Space (PMS-41)
Author: Demetrios Christodoulou
Publisher: Princeton University Press
ISBN: 1400863171
Category : Mathematics
Languages : en
Pages : 525
Book Description
The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400863171
Category : Mathematics
Languages : en
Pages : 525
Book Description
The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter. Originally published in 1994. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometrical Physics in Minkowski Spacetime
Author: E.G.Peter Rowe
Publisher: Springer Science & Business Media
ISBN: 1447138937
Category : Science
Languages : en
Pages : 263
Book Description
From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [...] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide
Publisher: Springer Science & Business Media
ISBN: 1447138937
Category : Science
Languages : en
Pages : 263
Book Description
From the reviews: "This attractive book provides an account of the theory of special relativity from a geometrical viewpoint, explaining the unification and insights that are given by such a treatment. [...] Can be read with profit by all who have taken a first course in relativity physics." ASLIB Book Guide
The Mathematics of Minkowski Space-Time
Author: Francesco Catoni
Publisher: Springer Science & Business Media
ISBN: 3764386142
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book arose out of original research on the extension of well-established applications of complex numbers related to Euclidean geometry and to the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers is extensively studied, and a plain exposition of space-time geometry and trigonometry is given. Commutative hypercomplex systems with four unities are studied and attention is drawn to their interesting properties.
Publisher: Springer Science & Business Media
ISBN: 3764386142
Category : Mathematics
Languages : en
Pages : 267
Book Description
This book arose out of original research on the extension of well-established applications of complex numbers related to Euclidean geometry and to the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers is extensively studied, and a plain exposition of space-time geometry and trigonometry is given. Commutative hypercomplex systems with four unities are studied and attention is drawn to their interesting properties.
Independent Axioms for Minkowski Space-Time
Author: John W Schutz
Publisher: CRC Press
ISBN: 9780582317604
Category : Science
Languages : en
Pages : 260
Book Description
The primary aim of this monograph is to clarify the undefined primitive concepts and the axioms which form the basis of Einstein's theory of special relativity. Minkowski space-time is developed from a set of independent axioms, stated in terms of a single relation of betweenness. It is shown that all models are isomorphic to the usual coordinate model, and the axioms are consistent relative to the reals.
Publisher: CRC Press
ISBN: 9780582317604
Category : Science
Languages : en
Pages : 260
Book Description
The primary aim of this monograph is to clarify the undefined primitive concepts and the axioms which form the basis of Einstein's theory of special relativity. Minkowski space-time is developed from a set of independent axioms, stated in terms of a single relation of betweenness. It is shown that all models are isomorphic to the usual coordinate model, and the axioms are consistent relative to the reals.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Space and Time
Author: Hermann Minkowski
Publisher: Minkowski Institute Press
ISBN: 0987987119
Category :
Languages : en
Pages : 134
Book Description
This is the first publication (in German or English) of Hermann Minkowski's three papers on relativity together: The Relativity Principle - lecture given at the meeting of the Göttingen Mathematical Society on November 5, 1907. This is the first English translation. The Fundamental Equations for Electromagnetic Processes in Moving Bodies - lecture given at the meeting of the Göttingen Scientific Society on December 21, 1907. New translation. Space and Time - lecture given at the 80th Meeting of Natural Scientists in Cologne on September 21, 1908. New translation.
Publisher: Minkowski Institute Press
ISBN: 0987987119
Category :
Languages : en
Pages : 134
Book Description
This is the first publication (in German or English) of Hermann Minkowski's three papers on relativity together: The Relativity Principle - lecture given at the meeting of the Göttingen Mathematical Society on November 5, 1907. This is the first English translation. The Fundamental Equations for Electromagnetic Processes in Moving Bodies - lecture given at the meeting of the Göttingen Scientific Society on December 21, 1907. New translation. Space and Time - lecture given at the 80th Meeting of Natural Scientists in Cologne on September 21, 1908. New translation.
Deformed Spacetime
Author: Fabio Cardone
Publisher: Springer Science & Business Media
ISBN: 1402062834
Category : Science
Languages : en
Pages : 499
Book Description
This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.
Publisher: Springer Science & Business Media
ISBN: 1402062834
Category : Science
Languages : en
Pages : 499
Book Description
This volume provides a detailed discussion of the mathematical aspects and physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism.
Extensions of the Stability Theorem of the Minkowski Space in General Relativity
Author: Lydia Bieri
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523
Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523
Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.