Mathematical Works Printed in the Americas, 1554–1700

Mathematical Works Printed in the Americas, 1554–1700 PDF Author: Bruce Stanley Burdick
Publisher: JHU Press
ISBN: 142140205X
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This magisterial annotated bibliography of the earliest mathematical works to be printed in the New World challenges long-held assumptions about the earliest examples of American mathematical endeavor. Bruce Stanley Burdick brings together mathematical writings from Mexico, Lima, and the English colonies of Massachusetts, Pennsylvania, and New York. The book provides important information such as author, printer, place of publication, and location of original copies of each of the works discussed. Burdick’s exhaustive research has unearthed numerous examples of books not previously cataloged as mathematical. While it was thought that no mathematical writings in English were printed in the Americas before 1703, Burdick gives scholars one of their first chances to discover Jacob Taylor’s 1697 Tenebrae, a treatise on solving triangles and other figures using basic trigonometry. He also goes beyond the English language to discuss works in Spanish and Latin, such as Alonso de la Vera Cruz's 1554 logic text, the Recognitio Summularum; a book on astrology by Enrico Martínez; books on the nature of comets by Carlos de Sigüenza y Góngora and Eusebio Francisco Kino; and a 1676 almanac by Feliciana Ruiz, the first woman to produce a mathematical work in the Americas. Those fascinated by mathematics, its history, and its culture will note with interest that many of these works, including all of the earliest ones, are from Mexico, not from what is now the United States. As such, the book will challenge us to rethink the history of mathematics on the American continents.

Mathematical Works Printed in the Americas, 1554–1700

Mathematical Works Printed in the Americas, 1554–1700 PDF Author: Bruce Stanley Burdick
Publisher: JHU Press
ISBN: 142140205X
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This magisterial annotated bibliography of the earliest mathematical works to be printed in the New World challenges long-held assumptions about the earliest examples of American mathematical endeavor. Bruce Stanley Burdick brings together mathematical writings from Mexico, Lima, and the English colonies of Massachusetts, Pennsylvania, and New York. The book provides important information such as author, printer, place of publication, and location of original copies of each of the works discussed. Burdick’s exhaustive research has unearthed numerous examples of books not previously cataloged as mathematical. While it was thought that no mathematical writings in English were printed in the Americas before 1703, Burdick gives scholars one of their first chances to discover Jacob Taylor’s 1697 Tenebrae, a treatise on solving triangles and other figures using basic trigonometry. He also goes beyond the English language to discuss works in Spanish and Latin, such as Alonso de la Vera Cruz's 1554 logic text, the Recognitio Summularum; a book on astrology by Enrico Martínez; books on the nature of comets by Carlos de Sigüenza y Góngora and Eusebio Francisco Kino; and a 1676 almanac by Feliciana Ruiz, the first woman to produce a mathematical work in the Americas. Those fascinated by mathematics, its history, and its culture will note with interest that many of these works, including all of the earliest ones, are from Mexico, not from what is now the United States. As such, the book will challenge us to rethink the history of mathematics on the American continents.

How Math Works

How Math Works PDF Author: G. Arnell Williams
Publisher: Rowman & Littlefield Publishers
ISBN: 1442218762
Category : Education
Languages : en
Pages : 347

Get Book Here

Book Description
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!

But why Does it Work?

But why Does it Work? PDF Author: Susan Jo Russell
Publisher: Heinemann Educational Books
ISBN: 9780325081144
Category : Education
Languages : en
Pages : 0

Get Book Here

Book Description
If you ask students, "Why does that work?" do they know what you're asking and do you know what to listen for in their responses? Do you have images of what mathematical argument looks like in the elementary grades and how to help students learn to engage in this important practice? Do you have so much content to cover that finding time for this kind of work is difficult? But Why Does It Work? offers a simple, efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Designed for individuals as well as study groups, this book includes access to classroom-ready instructional sequences, each built on a model supporting students in: noticing relationships across sets of problems, equations, or expressions articulating a claim about what they notice investigating their claim through representations such as manipulatives, diagrams, or story contexts using their representations to demonstrate why a claim must be true or not extending their thinking from one operation to another. Establishing a classroom culture where students gain confidence in their own mathematical voice and learn to value the contributions of their peers is a critical part of this work. The authors tell us, "If the idea underlying a student's reasoning is not made explicit, the opportunity for all students to engage in such thinking is lost." As students become a true community of mathematicians, they heighten each other's understanding by investigating questions, conjectures, and examples together. Enhanced with extensive video showing the instructional sequences in action-along with guiding focus questions and math investigations-But Why Does It Work? is a flexible approach that will help students confidently articulate and defend their reasoning, and share their deep thinking with others.

Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12 PDF Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209

Get Book Here

Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.

The Mathematical Works

The Mathematical Works PDF Author: Isaac Barrow
Publisher:
ISBN:
Category : Curves, Plane
Languages : en
Pages :

Get Book Here

Book Description


Math Work Stations

Math Work Stations PDF Author: Debbie Diller
Publisher: Taylor & Francis
ISBN: 1003841783
Category : Education
Languages : en
Pages : 597

Get Book Here

Book Description
If you' ve ever questioned how to make math stations work, you' ll find this photo-filled, idea-packed resource invaluable. This book extends Debbie Diller' s best-selling work on literacy work stations and classroom design to the field of mathematics. In Math Work Stations you' ll find ideas to help children develop conceptual understanding and skills, use math vocabulary as they talk about their mathematical thinking, and connect big ideas to meaningful independent exploration and practice. This book details how to set up, manage, and keep math stations going throughout the year. There' s even a chapter devoted solely to organizing and using math manipulatives. Each chapter includes: key concepts based on NCTM and state math standards; math vocabulary resources and literature links; suggested materials to include at each station for the corresponding math content strand; ideas for modeling, troubleshooting, differentiating, and assessment; and reflection questions for professional development.Throughout the book, Debbie has included hundreds of color photos showing math work stations in action from a variety of classrooms in which she has worked. Charts, reproducible forms, and math work stations icons are included to provide everything you' ll need to get started with stations in your classroom right away.

The Mathematical Works of Bernard Bolzano

The Mathematical Works of Bernard Bolzano PDF Author: Bernard Bolzano
Publisher: Oxford University Press
ISBN: 0198539304
Category : Mathematics
Languages : en
Pages : 729

Get Book Here

Book Description
Bernard Bolzano (1781-1848, Prague) was an outstanding thinker and reformer, far ahead of his times in many areas, including philosophy, ethics, politics, logic, theology and physics, and mathematics. Aimed at historians of mathematics, philosophy, ethics and logic, this volume contains the first English translations of some of his most significant mathematical writings, which contain the details of many celebrated insights and anticipations: clear topological definitions of various geometric extensions, an effective statement and use of the Cauchy convergence before it appears in Cauchy's work, remarkable results on measurable numbers (a version of real numbers), on functions (the construction of a continuous, non-differentiable function around 1830) and on infinite collections.

Mathematics for Human Flourishing

Mathematics for Human Flourishing PDF Author: Francis Su
Publisher: Yale University Press
ISBN: 0300248814
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.

Euler

Euler PDF Author: William Dunham
Publisher: American Mathematical Society
ISBN: 147046618X
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
Leonhard Euler was one of the most prolific mathematicians that have ever lived. This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.

How Not to Be Wrong

How Not to Be Wrong PDF Author: Jordan Ellenberg
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.