The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands PDF Author: Zhiqiang Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis describes the structures and the magnetic properties of the first row transition metal complexes containing open-chain diazine (N-N) moieties. The purpose of the research is to establish a magnetostructural correlation involving the N-N single bond bridge and to investigate the coordination chemistry of open-chain diazine ligands to the first row transition metal ions. A relevant literature search is presented in Chapter 1. -- Chapter 1 describes a general introduction to magnetic exchange in polynuclear copper complexes and a general review of the coordination chemistry of diazine (N2) bridged complexes. In Chapter 2, seventeen dicopper(II) complexes with five open-chain diazine ligands (PAHAP, PMHAP, PHMAP, PHAAP and PYPZ) are reported, in which the two copper(II) centers are bridged by a single N-N bond only. The X-ray structures of one ligand and twelve dinuclear copper(II) complexes were determined. Changing the ligands, together with varying the coligands leads to a situation where the dihedral angle between the copper planes can be varied from 75° to 168.5°. For small angles (less than 80°) ferromagnetic coupling prevails, whereas at larger angles antiferromagnetic exchange is observed between the copper(II) centers. The exchange integrals (-2J) vary from -24.4 to 210 cm−1. This is associated with the degree of alignment of the nitrogen p orbitals in the diazine bridge, and is supported by molecular orbital calculations on the complexes and appropriate models. Chapter 3 deals mainly with dinuclear copper(II) complexes containing two ligands bridging two metal centers. The dinuclear copper(II) complexes containing two N-N single bonds have no or very weak coupling because of orbital orthogonality and the twisting of the two copper planes around these two N-N single bonds. A dicopper complex containing mixed diazine bridges (pyridazine/N-N) shows weak antiferromagnetic coupling, and since the diazine unit in the aromatic ring system bridges two copper centers in an orthogonal manner, this net antiferromagnetic coupling occurs only through the open-chain diazine bridge. A tetranuclear copper complex contains two pairs of dicopper(II) centers bridged orthogonally by two μ2-1,1-azide anions with each pair of copper(II) centers bridged by one N-N single bond and one μ2-1,1-azide with a 119° azide bridge angle. The dihedral angle about the N-N single bond is 54°, which indicates either no coupling or weak ferromagnetic coupling via such a bridge. Therefore, the strong antiferromagnetic coupling (-2J = 246 cm−1 ) occurs only through the μ2-1,1-azide bridges between each pair of copper(II) centers, giving the first genuine example contradicting the spin polarization mechanism associated with azide bridges. In Chapter 4, a series of spiral-like dinuclear complexes of Mn(II), Fe(II), Fe(III), Co(II), Co(III) and Ni(II) ions containing three N-N single bonds with a formula [L3M2].(X)n.mH2O (L = PAHAP, PZHPZ; X = CIO4 or NO3; n = 4, 6) and a seven-coordinate Fe(III) complex are discussed. The X-ray structures of six of these complexes have been determined. Variable-temperature magnetic properties, electrochemistry and spectra are discussed. Chapter 5 discusses the synthesis, structural and magnetic properties of some mononuclear and polynuclear first row transition metal complexes of the open-chain diazine ligands. The X-ray structures of eight complexes were determined. Two new coordination modes for open-chain diazine ligands have been found. In the last chapter, a general conclusion about coordination modes, magnetostructural correlations, etc. of the open-chain diazine complexes is made.

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands PDF Author: Zhiqiang Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis describes the structures and the magnetic properties of the first row transition metal complexes containing open-chain diazine (N-N) moieties. The purpose of the research is to establish a magnetostructural correlation involving the N-N single bond bridge and to investigate the coordination chemistry of open-chain diazine ligands to the first row transition metal ions. A relevant literature search is presented in Chapter 1. -- Chapter 1 describes a general introduction to magnetic exchange in polynuclear copper complexes and a general review of the coordination chemistry of diazine (N2) bridged complexes. In Chapter 2, seventeen dicopper(II) complexes with five open-chain diazine ligands (PAHAP, PMHAP, PHMAP, PHAAP and PYPZ) are reported, in which the two copper(II) centers are bridged by a single N-N bond only. The X-ray structures of one ligand and twelve dinuclear copper(II) complexes were determined. Changing the ligands, together with varying the coligands leads to a situation where the dihedral angle between the copper planes can be varied from 75° to 168.5°. For small angles (less than 80°) ferromagnetic coupling prevails, whereas at larger angles antiferromagnetic exchange is observed between the copper(II) centers. The exchange integrals (-2J) vary from -24.4 to 210 cm−1. This is associated with the degree of alignment of the nitrogen p orbitals in the diazine bridge, and is supported by molecular orbital calculations on the complexes and appropriate models. Chapter 3 deals mainly with dinuclear copper(II) complexes containing two ligands bridging two metal centers. The dinuclear copper(II) complexes containing two N-N single bonds have no or very weak coupling because of orbital orthogonality and the twisting of the two copper planes around these two N-N single bonds. A dicopper complex containing mixed diazine bridges (pyridazine/N-N) shows weak antiferromagnetic coupling, and since the diazine unit in the aromatic ring system bridges two copper centers in an orthogonal manner, this net antiferromagnetic coupling occurs only through the open-chain diazine bridge. A tetranuclear copper complex contains two pairs of dicopper(II) centers bridged orthogonally by two μ2-1,1-azide anions with each pair of copper(II) centers bridged by one N-N single bond and one μ2-1,1-azide with a 119° azide bridge angle. The dihedral angle about the N-N single bond is 54°, which indicates either no coupling or weak ferromagnetic coupling via such a bridge. Therefore, the strong antiferromagnetic coupling (-2J = 246 cm−1 ) occurs only through the μ2-1,1-azide bridges between each pair of copper(II) centers, giving the first genuine example contradicting the spin polarization mechanism associated with azide bridges. In Chapter 4, a series of spiral-like dinuclear complexes of Mn(II), Fe(II), Fe(III), Co(II), Co(III) and Ni(II) ions containing three N-N single bonds with a formula [L3M2].(X)n.mH2O (L = PAHAP, PZHPZ; X = CIO4 or NO3; n = 4, 6) and a seven-coordinate Fe(III) complex are discussed. The X-ray structures of six of these complexes have been determined. Variable-temperature magnetic properties, electrochemistry and spectra are discussed. Chapter 5 discusses the synthesis, structural and magnetic properties of some mononuclear and polynuclear first row transition metal complexes of the open-chain diazine ligands. The X-ray structures of eight complexes were determined. Two new coordination modes for open-chain diazine ligands have been found. In the last chapter, a general conclusion about coordination modes, magnetostructural correlations, etc. of the open-chain diazine complexes is made.

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands PDF Author: Chih-chʻiang Hsü
Publisher:
ISBN:
Category : Copper ions
Languages : en
Pages : 670

Get Book Here

Book Description


The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands

The Magnetism and Coordination Chemistry of Mononuclear and Polynuclear Complexes of Copper(II) and Other First Row Transition Metal Ions Derived from Open-chain Diazine (N-N) Ligands PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 680

Get Book Here

Book Description


The Coordination Chemistry and Magnetism of Compounds Derived from Formylphenols and Diaminomaleonitrile

The Coordination Chemistry and Magnetism of Compounds Derived from Formylphenols and Diaminomaleonitrile PDF Author: Murray Kitchener Park
Publisher:
ISBN:
Category : Coordination compounds
Languages : en
Pages : 238

Get Book Here

Book Description


The Chemistry of Coordination Complexes and Transition Metals

The Chemistry of Coordination Complexes and Transition Metals PDF Author: P.L. Soni
Publisher: CRC Press
ISBN: 1000404145
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
This book covers all important nomenclature, theories of bonding and stereochemistry of coordination complexes. The authors have made an effort to inscribe the ideas knowledge, clearly and in an interesting way to benefit the readers. The complexities of Molecular Orbital theory have been explained in a very simple and easy manner. It also deals with transition and inner transition metals. Conceptually, all transition and inner transition elements form complexes which have definite geometry and show interesting properties. General and specific methods of preparation, physical and chemical properties of each element has been discussed at length. Group wise study of elements in d-block series have been explained. Important compounds, complexes and organometallic compounds of metals in different oxidation states have been given explicitly. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Low-coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands

Low-coordinate First Row Early Transition Metal Complexes Stabilized by Modified Terphenyl Ligands PDF Author: Jessica Nicole Boynton
Publisher:
ISBN: 9781321210804
Category :
Languages : en
Pages :

Get Book Here

Book Description
The research in this dissertation is focused on the synthesis, structural, and magnetic characterization of two-coordinate open shell (d1-d4) transition metal complexes. Background information on this field of endeavor is provided in Chapter 1. In Chapter 2 I describe the synthesis and characterization of the mononuclear chromium (II) terphenyl substituted primary amido complexes and a Lewis base adduct. These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 [mu]B owing to the fact that [lambda] (the spin orbit coupling parameter) is positive. The three-coordinated complex 2.3 had a magnetic moment of 3.77 [mu]B. The synthesis and characterization of the first stable two-coordinate vanadium complexes are described in Chapter 3. The values suggest a significant spin orbital angular momentum contribution that leads to a magnetic moment that is lower than their spin only value of 3.87 [mu]B. DFT calculations showed that the major absorptions in their UV-Vis spectra were due to ligand to metal charge transfer transitions. The titanium synthesis and characterization of the bisamido complex along with its three-coordinate titanium(III) precursor are described in Chapter 4. Compound 4.1 was obtained via the stoichiometric reaction of LiN(H)AriPr 6 with the Ti(III) complex TiCl3 *2NMe3 in trimethylamine. The precursor 4.1 has trigonal pyramidal coordination at the titanium atom, with bonding to two amido nitrogens and a chlorine as well as a secondary interaction to a flanking aryl ring of a terphenyl substituent. Compound 4.2 displays a very distorted four-coordinate metal environment in which the titanium atom is bound to two amido nitrogens and to two carbons from a terphenyl aryl ring. This structure is in sharp contrast to the two-coordinate linear structure that was observed in its first row metal (V-Ni) analogs. The synthesis and characterization of mononuclear chromium(II) terphenyl primary substituted thiolate complexes are described in Chapter 5. Reaction of the terphenyl primary thiolate lithium derivatives LiSAriPr4 and LiSArMe6 with CrCl2THF2 in a 2:1 ratio afforded complexes 5.1 and 5.2, which are the very rare examples of chromium(II) thiolates with quasi-two-coordination at the metal center. Both deviate from linearity and have S-Cr-S angles of 111.02(3)° and 107.86(3)° with secondary Cr-C(aryl ring) interactions of ca. 2.115 Å and 1.971 Å respectively. The initial work on titanium and vanadium terphenyl thiolates is described in Appendix I and II. In Chapter 6 I show that the reaction of K2COT (COT= 1,3,5,7-cyclooctatetraene, C8H8) with an aryl chromium(II) halide gave (CrAriPr4)2([mu]2-n3:n4-COT) (6.1) in which a non-planar COT ring is complexed between two CrAriPr4 moieties -- a configuration previously unknown for chromium complexes of COT. OneCr2+ ion is bonded primarily to three COT carbons (Cr--C= 2.22-2.30 Å ) as well as an ipso carbon (Cr-C= ca. 2.47 Å) from a flanking aryl ring of its terphenyl substituent. The other Cr2+ ion bonds to an ipso carbon (Cr-C= ca. 2.53 Å) from its terphenyl substituent as well as four COT carbons (Cr--C= 2.24-2.32 Å). The COT carbon-carbon distances display an alternating pattern, consistent with the non-planarity and non-aromatic character of the ring. The magnetic properties of 6.1 indicate that the Cr2+ ions have a high-spin d4 configuration with S = 2. The temperature dependence of the magnetism indicates that their behavior is due to zero-field splitting of the S = 2 state. Attempts to prepare 6.1 by the direct reaction of quintuple-bonded (CrAriPr4)2 with COT were unsuccessful. (Abstract shortened by UMI.) --Proquest.

Polynuclear Transition Metal Complexes Containing Azido and Pyrazolinato Bridging Ligands

Polynuclear Transition Metal Complexes Containing Azido and Pyrazolinato Bridging Ligands PDF Author: Stephanos Organtzis
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description


Synthesis and Characterization of Low Coordinate Transition Metal Complexes

Synthesis and Characterization of Low Coordinate Transition Metal Complexes PDF Author: Aimee M. Bryan
Publisher:
ISBN: 9781321608106
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation describes the synthesis, characterization, and reactivity studies of new low-coordinate complexes of readily available and inexpensive transition metals such as iron, cobalt and nickel. The compounds were magnetically characterized in detail and tested for single molecule magnet (SMM) behavior. SMMs are a topic of intense research because of their potential applications in magnetic memory, high-density information storage and quantum computing technologies. Low-coordinate compounds display magnetic moments that indicate high orbital angular momentum and are very promising candidates for SMM behavior because they also tend to have large negative zero-field splitting (D) values. The complexes reported here are stabilized by using a variety of amido, aryloxo and thiolato ligands with bulky terphenyl groups and also using aryl and alkyl substituted silylamides. A superconducting quantum interference device (SQUID) and Evans' methods were used to study the magnetic properties and single crystal X-ray crystallography and NMR (1H and 13C) were used to confirm the structures of these compounds in both the solid and solution states. Further characterization studies included UV-visible, near-IR, and IR spectroscopy, melting point, elemental analysis and DFT calculations, where applicable, in order to determine the electronic configurations and bonding schemes. At present there are ca. 100 stable open shell two-coordinate mononuclear transition metal complexes currently known but ca. 20% have a linear coordination at the metal atom with only a few being strictly 180° at their metal center. Very few of these compounds had been magnetically characterized. In Chapter 2, the synthesis and magnetic characterization of the late transition metal Co2+ (d7) and Ni2+ (d8) primary amido complexes Co{N(H)Ar(iPr6)}2, Co{N(H)Ar(Me6)}2, Ni{N(H)Ar(iPr6)}2 and Ni{N(H)Ar(Me6)}2 (Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2, Ar(iPr6) = C6H3-2,6(C6H2-2,4,6-(i)Pr3)2) are described. The investigations showed that they exhibit interesting magnetic behavior. The bent versus linear geometries of the complexes enable direct observation of the effects of orbital angular momentum quenching upon bending the metal coordination geometry. The electronic configuration of the linear cobalt(II) complexes does not predict first order orbital angular momentum and yet, the magnetic moment of Co{N(H)Ar(iPr6))2 is much higher than the spin only value which suggests a large spin-orbit coupling effects due to mixing of the ground and excited states. In Chapter 3, the synthesis and characterization of the mononuclear chromium, iron, cobalt and nickel terphenyl substituted thiolate complexes Cr(SAr(Me6))2, Cr(SAr(iPr4))2, Fe(SAr(iPr4))2, Co(SAr(iPr4))2 and Ni(SAr(iPr4))2 are described. Their structures show bent coordination geometries of varying degree with strong secondary M-[eta]6 and M-C(ipso) flanking aryl ring interactions of ca. 2.153 [Angstrom] for Fe(SAr(iPr4))2, ca. 1.625 [Angstrom] for Co(SAr(iPr4))2 and ca. 1.731 [Angstrom] for Ni(SAr(iPr4))2. This observation is in sharp contrast to the almost linear coordination observed for the derivatives of the related but more crowded terphenyl thiolate ligand, SAr(iPr6), in M(SAr(iPr6))2 complexes where M = Cr, Fe, Co and Ni and the strictly linear geometry observed for the terphenyloxo analogs M(OAr(iPr4))2 where M = Fe and Co. Magnetic moments for these species are, in general, lower than the spin-only values. Expect for chromium, this is an unexpected observation for late transition metal low-coordinate complexes. The suppression of magnetic moments is most like due to the strong M-arene interactions which effectively increases the coordination number at the metal atom. These results demonstrate the important role that substituents play on the flanking rings of the terphenyl ligands and begs further investigations involving the role of dispersion in the isolation of low coordination mononuclear transition metal complexes. The divalent silylamides M{N(SiMe3)2}2 (M = Mn, Fe, and Co) are key synthons for low-coordinate transition-metal derivatives. In Chapter 4, the previously reported, but incorrectly characterized cobalt(II) silylamide, [Co{N(SiMe3)2}2]2 has been spectroscopically and magnetically characterized for the first time. In addition, the new Lewis base complexes [Co{N(SiMe3)2}2(PMe3)], and [Co{N(SiMe3)2}2(THF)], as well as a previously reported complex [Co{N(SiMe3)2}2(py)] were isolated and characterized. Magnetic studies showed that they had considerably larger magnetic moments than the spin-only value of 3.87 [mu](B), which is indicative of a significant zero-field splitting and g-tensor anisotropy. In addition to their interesting magnetic behavior and unexpectedly large D values in the range of -20 to -80 cm−1. The electronic spectrum of [Co{N(SiMe3)2}2]2 in solution showed that earlier characterization spectra of "Co{N(SiMe3)2}2" match that of the bright green THF adduct and not the dark brown cobalt dimer [Co{N(SiMe3)2}2]2. In Chapter 5, it is shown that the reaction of the versatile cobalt(II) amide, [Co{N(SiMe3)2}2]2, with four equivalents of the sterically crowded terphenyl phenols, HOAr(Me6) and HOAr(iPr4) (Ar(iPr4) = C6H3-2,6(C6H3-2,6-(i)Pr2)2) produced the first well-characterized, monomeric two-coordinate cobalt(II) bisaryloxides, Co{OAr(Me6))2 and Co(OAr(iPr4))2. Not only are these very rare examples of two-coordinate transition metal(II) aryloxides, but the magnetic moments of both the linear and the bent species were well in excess of the spin only value for cobalt(II) ion. It was demonstrated that careful manipulation of the synthetic conditions for Co(OAr(iPr4))2 could produce varying occupancies of the cobalt(II) site and that after weighting the magnetic susceptibilities of the compounds accordingly, the moments were shown to be in close agreement with each other. Chapter 6 reports the synthesis of the unstable nickel(II) bis(silylamide) complex Ni{N(SiMe3)2}2 via the reaction of NiI2 and two equivalents of NaN(SiMe3)2 in tetrahydrofuran, as well as two of its Lewis base adducts, Ni{N(SiMe3)2}2(THF) and Ni{N(SiMe3)2}2(py)2. The reaction of two equivalents of LiN(SiMe3)2 with NiCl2(DME) in tetrahydrofuran afforded the reduced homoleptic tetrameric nickel(I) amide complex, [Ni{N(SiMe3)2}]4. This unique polymetallic structure having a Ni4N4 planar array has four S = 1/2 nickel (I) ions and an antiferromagnetic exchange coupling constant of J = -102(2) cm−1. This study provides strong evidence that the formation of nickel(II) and nickel(I) amido complexes is possible without the use of sterically demanding ligand sets.

Magnetic and Structural Variability of First Row Transition Metal Complexes with Polyfunctional Ligands

Magnetic and Structural Variability of First Row Transition Metal Complexes with Polyfunctional Ligands PDF Author: Miroslav Boča
Publisher:
ISBN:
Category :
Languages : en
Pages : 426

Get Book Here

Book Description