The Inelastic Seismic Response of Reinforced Concrete Frame - Shear-wall Structures

The Inelastic Seismic Response of Reinforced Concrete Frame - Shear-wall Structures PDF Author: W. J. Goodsir
Publisher:
ISBN:
Category : Testing-machines
Languages : en
Pages : 155

Get Book Here

Book Description

The Inelastic Seismic Response of Reinforced Concrete Frame - Shear-wall Structures

The Inelastic Seismic Response of Reinforced Concrete Frame - Shear-wall Structures PDF Author: W. J. Goodsir
Publisher:
ISBN:
Category : Testing-machines
Languages : en
Pages : 155

Get Book Here

Book Description


Inelastic Seismic Response of Reinforced-concrete Low-rise Shear Walls and Building Structures

Inelastic Seismic Response of Reinforced-concrete Low-rise Shear Walls and Building Structures PDF Author: Franklin Y. Cheng
Publisher:
ISBN:
Category : Buildings, Reinforced concrete
Languages : en
Pages : 419

Get Book Here

Book Description


Displacement-based Seismic Design of Reinforced Concrete Buildings

Displacement-based Seismic Design of Reinforced Concrete Buildings PDF Author: fib Fédération internationale du béton
Publisher: fib Fédération internationale du béton
ISBN: 9782883940659
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
A brief summary of the history of seismic design as given in chapter 1, indicates that initially design was purely based on strength or force considerations. When the importance of displacement, however, became better appreciated, it was attempted to modify the existing force-based approach in order to include considerations of displacement, rather than to totally reconsider the procedure on a more rational basis. In the last decade, then, several researchers started pointing out this inconsistency, proposing displacement-based approaches for earthquake engineering evaluation and design, with the aim of providing improved reliability in the engineering process by more directly relating computed response and expected structural performance. The main objective of this report is to summarize, critically review and compare the displacement - based approaches proposed in the literature, thus favouring code implementation and practical use of rational and reliable methods. Chapter 2 Seismic performance and design objectives of this report introduces concepts of performance levels, seismic hazard representation, and the coupling of performance and hazard to define performance objectives. In fact, for displacement analysis to be relevant in the context of performance-based design, the structural engineer must select appropriate performance levels and seismic loadings. A critical review of some engineering limit states appropriate to the different performance levels is therefore proposed. In chapter 3 Conceptual basis for displacement-based earthquake resistant design, the fundamental principles associated with displacement of the ground during an earthquake and the effects, in terms of displacement, in the structure, are reviewed. The historical development guides the presentation with a review of general linear and nonlinear structural dynamics principles, general approaches to estimate displacement, for both ground and structure, and finally a general presentation of the means to measure and judge the appropriateness of the displacements of the structure in section. Chapter 4 Approaches and procedures for displacement-based design can be somehow considered the fundamental part of the report, since a critical summary of the displacement - based approaches proposed by different researchers is presented there. Displacement - based design may require specific characterization of the input ground motion, a topic addressed in Chapter 5 Seismic input. In general, various pertinent definitions of input motion for non-code format analysis are included, while peak ground parameters necessary for code base shear equations are only addressed as needed for the definition of motion for analysis. Chapter 6 Displacement capacity of members and systems addresses the fundamental problem of evaluating the inelastic displacement capacity of reinforced concrete members and realistic values of their effective cracked stiffness at yielding, including effects of shear and inclined cracking, anchorage slip, bar buckling and of load cycling. In Chapter 7 Application and evaluation of displacement-based approaches, some of the many different displacement based design procedures briefly introduced in Chapter 4 are applied to various case studies, identifying and discussing the difficulties a designer may encounter when trying to use displacement based design. Results for five different case studies designed in accordance with eight different displacement based design methods are presented. Although in general case studies are considered a useful but marginal part of a state of the art document, in this case it has to be noted that chapter 7 is possibly the most innovative and fundamental part of the whole report. The conclusions of chapter 7 are the fundamental and essential conclusions of the document and allow foreseeing a bright future for displacement - based design approaches. The state-of-art report has been elaborated over a period of 4 years by Task Group 7.2 Displacement-based design and assessment of fib Commission 7Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In October 2002 the final draft of the Bulletin was presented to the public during the 1st fibCongress in Osaka. It was also there that it was approved by fib Commission 7Seismic Design.

Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response

Seismic Design of Reinforced Concrete Structures for Controlled Inelastic Response PDF Author: Comité euro-international du béton
Publisher: Thomas Telford
ISBN: 9780727726414
Category : Technology & Engineering
Languages : en
Pages : 196

Get Book Here

Book Description
This detailed guide is designed to enable the reader to understand the relative importance of the numerous parameters involved in seismic design and the relationships between them, as well as the motivations behind the choices adopted by the codes.

Effect of Anchorage Slip and Inelastic Shear on Seismic Response of Reinforced Concrete Frames

Effect of Anchorage Slip and Inelastic Shear on Seismic Response of Reinforced Concrete Frames PDF Author: Jaber Alsiwat
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 0

Get Book Here

Book Description
Reinforced Concrete structures located in regions of high seismic activity are expected to develop inelastic deformations in their critical regions. Therefore, inelastic dynamic analysis is required to obtain reliable predictions of structural behavior during an earthquake. Tests on reinforced concrete elements and subassemblages have shown that anchorage slip and inelastic shear deformations can be as significant as those due to inelastic flexure, in the critical regions. Hence, a proper seismic analysis should include inelastic deformations due to anchorage slip, shear and flexure. Flexural response has been researched extensively in the past. Research on the effects of anchorage slip and shear inelasticity is scarce in the literature.

Inelastic Seismic Response of Reinforced Concrete Buildings with Floor Diaphragm Openings

Inelastic Seismic Response of Reinforced Concrete Buildings with Floor Diaphragm Openings PDF Author: Mohamed T. Al Harash
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 450

Get Book Here

Book Description
Floor and roof systems are designed to carry gravity loads and transfer these loads to supporting beams, columns or walls. Furthermore, they play a key role in distributing earthquake-induced loads to the lateral load resisting systems by diaphragm action. In reinforced concrete buildings, the in-plane flexibility of the floor diaphragms is often ignored for simplicity in practical design (i.e., the floor systems are frequently treated as perfectly rigid diaphragms). In recent building standards (ASCE-7, 2005), it is acknowledged that this assumption can result in considerable errors when predicting the seismic response of reinforced concrete buildings with diaphragm plan aspect ratio of 3:1 or greater. However, the influence of floor diaphragm openings (typically for the purpose of stairways, shafts, or other architectural features) has not been considered. In order to investigate the influence of diaphragm openings on the seismic response of reinforced concrete buildings; several 3-story reinforced concrete buildings are designed as a Building Frame System according to the International Building Code (2006). Each building is assumed to be in the Saint Louis, Missouri area, and it's analyzed using IDARC2, a non-commercial program capable of conducting nonlinear analysis of RC buildings with rigid, elastic, or inelastic floor diaphragms, under both static lateral loads (pushover) and dynamic ground motions (time-history), where a suite of three well-known earthquakes is scaled to model moderate ground motions in the Saint Louis region. The comprehensive analytical study conducted involves placing different opening sizes (none, 11%, 15% and 22% of total floor area) in various floor plan locations with respect to the location of the shear walls (located at end frames or at the interior frames), where three types of floor diaphragm models (rigid, elastic, and inelastic) are assumed. Building floor plan aspect ratios of 3:1 and 4:1 are investigated. IDARC2 is enhanced by modifying the fiber model (strain compatibility) computation routine involved in obtaining the idealized moment-curvature curves of floor slabs with openings (symmetric and nonsymmetric). Also, a new option is added so that the user can over-ride IDARC2 idealized moment-curvature curves for slabs with openings and by defining their own. The results are then presented and discussed. It is concluded that in order to capture the seismic response of reinforced concrete buildings with floor diaphragm openings accurately; it is necessary to use an inelastic diaphragm model for floor diaphragm aspect ratio of 3:1 or greater. Thus, using a rigid diaphragm assumption, as specified by ASCE7-05 for buildings concrete floor diaphragms with aspect ratio of 3:1, and elastic diaphragm assumption, as allowed by ASCE7-05 for floor diaphragm with aspect ratio of 4:1, can result in significant underestimations of the lateral loads resisted by the interior building frames and building maximum frame displacements, particularly when the diaphragm openings are located in the middle two-thirds of the building plan. The base shear redistribution due to inelastic slab deformations increases the load subjected to the interior frames significantly. Hence, the influence of inelastic inplane diaphragm deformations due to floor openings cannot be overlooked in such buildings. Simple design recommendation is given for determining proper diaphragm chord reinforcement to prevent in-plane floor slab yielding when openings are present.

Seismic design of reinforced concrete structures for controlled inelastic response design concepts

Seismic design of reinforced concrete structures for controlled inelastic response design concepts PDF Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883940355
Category : Technology & Engineering
Languages : en
Pages : 213

Get Book Here

Book Description


Modeling of Inelastic Behavior of RC Structures Under Seismic Loads

Modeling of Inelastic Behavior of RC Structures Under Seismic Loads PDF Author: P. Benson Shing
Publisher: ASCE Publications
ISBN: 9780784474969
Category : Technology & Engineering
Languages : en
Pages : 636

Get Book Here

Book Description
Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.

A study on seismic response of reinforced structures retrofitted with fluid viscous dampers in shear walls

A study on seismic response of reinforced structures retrofitted with fluid viscous dampers in shear walls PDF Author: Sachin Kuckian
Publisher: GRIN Verlag
ISBN: 3668992762
Category : Science
Languages : en
Pages : 90

Get Book Here

Book Description
Master's Thesis from the year 2015 in the subject Engineering - Geotechnology, grade: 9.44, , course: Masters (Structural Engineering), language: English, abstract: The present study investigates the seismic behavior of multi-story building using damping devices strategically located within the lateral load resisting elements. It concentrates on a retrofitting strategy with passive energy dissipation device known as Fluid Viscous Damper (FVD) which will be applicable to new design as well as retrofitting existing buildings to ensure seismic safety by fitting damping devices which can transform a wall panel into a damping element. The first study involves analysis of a nine-story model having cut-outs and the use of the dampers of different configuration in these structures. The second study involves the use the diagonal brace configuration dampers provided in the cutout sections of 2D 9, 18, 27 storey structures and 3D 27 storey with core wall structure at three consecutive story levels each. For the second study, the cut out locations is varied depending on their relative positions. The relative position is the ratio of the total height of the structure to the upper edge of the topmost cut-out. These structures were initially modeled and time history analysis was performed on the structure without FVD and the structure retrofitted with FVD. Three different ground motions were used for the analysis. Results of the un- retrofitted structures are then compared with a retrofitted structure in terms of peak story displacements, roof accelerations, and pseudo-spectral accelerations. Study shows that there has been a significant reduction in seismic demands for a structure retrofitted with FVD in terms of peak storey displacements, pseudo-spectral accelerations and roof accelerations when the dampers are placed at lower three cut outs i.e. with high relative position. It is also observed that damping coefficient value obtained is least for upper toggle-brace configuration out of the four different damper configurations and with maximum reduction compared to other configurations. For modeling and analysis purpose the software SAP2000® is used. Through the study it could be concluded that FVD significantly reduces the seismic demands of the structure in terms of peak storey displacements, pseudo-spectral accelerations and roof accelerations. This suggests that FVDs can be efficiently used in retrofitting. Also damping coefficient value obtained is least for upper toggle-brace configuration out of the four different damper configurations suggesting this is the most efficient configuration for retrofitting.

Behavior and analysis of reinforced concrete structures under alternate actions inducing inelastic response

Behavior and analysis of reinforced concrete structures under alternate actions inducing inelastic response PDF Author: FIB – International Federation for Structural Concrete
Publisher: FIB - International Federation for Structural Concrete
ISBN: 2883940231
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description