Author: Bruce Chandler
Publisher:
ISBN:
Category : Combinatorial group theory
Languages : en
Pages : 256
Book Description
The History of Combinatorial Group Theory
Author: Bruce Chandler
Publisher:
ISBN:
Category : Combinatorial group theory
Languages : en
Pages : 256
Book Description
Publisher:
ISBN:
Category : Combinatorial group theory
Languages : en
Pages : 256
Book Description
Combinatorial Group Theory
Author: Wilhelm Magnus
Publisher: Courier Corporation
ISBN: 0486438309
Category : Mathematics
Languages : en
Pages : 466
Book Description
This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.
Publisher: Courier Corporation
ISBN: 0486438309
Category : Mathematics
Languages : en
Pages : 466
Book Description
This seminal, much-cited account begins with a fairly elementary exposition of basic concepts and a discussion of factor groups and subgroups. The topics of Nielsen transformations, free and amalgamated products, and commutator calculus receive detailed treatment. The concluding chapter surveys word, conjugacy, and related problems; adjunction and embedding problems; and more. Second, revised 1976 edition.
Combinatorial Group Theory
Author: Roger C. Lyndon
Publisher: Springer
ISBN: 3642618960
Category : Mathematics
Languages : en
Pages : 354
Book Description
From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews
Publisher: Springer
ISBN: 3642618960
Category : Mathematics
Languages : en
Pages : 354
Book Description
From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews
Topics in Combinatorial Group Theory
Author: Gilbert Baumslag
Publisher: Springer Science & Business Media
ISBN: 9783764329211
Category : Mathematics
Languages : en
Pages : 180
Book Description
Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
Publisher: Springer Science & Business Media
ISBN: 9783764329211
Category : Mathematics
Languages : en
Pages : 180
Book Description
Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
The History of Combinatorial Group Theory
Author: B. Chandler
Publisher: Springer Science & Business Media
ISBN: 1461394872
Category : Mathematics
Languages : en
Pages : 240
Book Description
One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study.
Publisher: Springer Science & Business Media
ISBN: 1461394872
Category : Mathematics
Languages : en
Pages : 240
Book Description
One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study.
Combinatorial Group Theory and Topology
Author: S. M. Gersten
Publisher: Princeton University Press
ISBN: 9780691084107
Category : Mathematics
Languages : en
Pages : 568
Book Description
Group theory and topology are closely related. The region of their interaction, combining the logical clarity of algebra with the depths of geometric intuition, is the subject of Combinatorial Group Theory and Topology. The work includes papers from a conference held in July 1984 at Alta Lodge, Utah. Contributors to the book include Roger Alperin, Hyman Bass, Max Benson, Joan S. Birman, Andrew J. Casson, Marshall Cohen, Donald J. Collins, Robert Craggs, Michael Dyer, Beno Eckmann, Stephen M. Gersten, Jane Gilman, Robert H. Gilman, Narain D. Gupta, John Hempel, James Howie, Roger Lyndon, Martin Lustig, Lee P. Neuwirth, Andrew J. Nicas, N. Patterson, John G. Ratcliffe, Frank Rimlinger, Caroline Series, John R. Stallings, C. W. Stark, and A. Royce Wolf.
Publisher: Princeton University Press
ISBN: 9780691084107
Category : Mathematics
Languages : en
Pages : 568
Book Description
Group theory and topology are closely related. The region of their interaction, combining the logical clarity of algebra with the depths of geometric intuition, is the subject of Combinatorial Group Theory and Topology. The work includes papers from a conference held in July 1984 at Alta Lodge, Utah. Contributors to the book include Roger Alperin, Hyman Bass, Max Benson, Joan S. Birman, Andrew J. Casson, Marshall Cohen, Donald J. Collins, Robert Craggs, Michael Dyer, Beno Eckmann, Stephen M. Gersten, Jane Gilman, Robert H. Gilman, Narain D. Gupta, John Hempel, James Howie, Roger Lyndon, Martin Lustig, Lee P. Neuwirth, Andrew J. Nicas, N. Patterson, John G. Ratcliffe, Frank Rimlinger, Caroline Series, John R. Stallings, C. W. Stark, and A. Royce Wolf.
Combinatorial Group Testing and Its Applications
Author: Dingzhu Du
Publisher: World Scientific
ISBN: 9810241070
Category : Mathematics
Languages : en
Pages : 337
Book Description
Group testing has been used in medical, chemical and electrical testing, coding, drug screening, pollution control, multiaccess channel management, and recently in data verification, clone library screening and AIDS testing. The mathematical model can be either combinatorial or probabilistic. This book summarizes all important results under the combinatorial model, and demonstrates their applications in real problems. Some other search problems, including the famous counterfeit-coins problem, are also studied in depth. There are two reasons for publishing a second edition of this book. The first is the usual need to update the text (after six years) and correct errors. The second -- and more important -- reason is to accommodate the recent sudden growth of interest in applying the idea of group testing to clone library screening. This development is much more than just a new application, since the new application brings with it new objectives which require a new twist of theory. It also embraces the growing importance of two topics: nonadaptive algorithms and error tolerance. Two new chapters, one on clone library screening and the other on error tolerance, have been added. Also included is a new chapter on counterfeit coins, the most famous search problem historically, which recently drew on an unexpected connection to some deep mathematical theory to yield new results. Finally, the chapters have been recognized into parts to provide focuses and perspectives.
Publisher: World Scientific
ISBN: 9810241070
Category : Mathematics
Languages : en
Pages : 337
Book Description
Group testing has been used in medical, chemical and electrical testing, coding, drug screening, pollution control, multiaccess channel management, and recently in data verification, clone library screening and AIDS testing. The mathematical model can be either combinatorial or probabilistic. This book summarizes all important results under the combinatorial model, and demonstrates their applications in real problems. Some other search problems, including the famous counterfeit-coins problem, are also studied in depth. There are two reasons for publishing a second edition of this book. The first is the usual need to update the text (after six years) and correct errors. The second -- and more important -- reason is to accommodate the recent sudden growth of interest in applying the idea of group testing to clone library screening. This development is much more than just a new application, since the new application brings with it new objectives which require a new twist of theory. It also embraces the growing importance of two topics: nonadaptive algorithms and error tolerance. Two new chapters, one on clone library screening and the other on error tolerance, have been added. Also included is a new chapter on counterfeit coins, the most famous search problem historically, which recently drew on an unexpected connection to some deep mathematical theory to yield new results. Finally, the chapters have been recognized into parts to provide focuses and perspectives.
Topics in Geometric Group Theory
Author: Pierre de la Harpe
Publisher: University of Chicago Press
ISBN: 9780226317199
Category : Education
Languages : en
Pages : 320
Book Description
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
Publisher: University of Chicago Press
ISBN: 9780226317199
Category : Education
Languages : en
Pages : 320
Book Description
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.
A Combinatorial Introduction to Topology
Author: Michael Henle
Publisher: Courier Corporation
ISBN: 9780486679662
Category : Mathematics
Languages : en
Pages : 340
Book Description
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Publisher: Courier Corporation
ISBN: 9780486679662
Category : Mathematics
Languages : en
Pages : 340
Book Description
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
The History of Combinatorial Group Theory
Author: B. Chandler
Publisher:
ISBN: 9781461394884
Category :
Languages : en
Pages : 248
Book Description
Publisher:
ISBN: 9781461394884
Category :
Languages : en
Pages : 248
Book Description