The Geometry of the Word Problem for Finitely Generated Groups

The Geometry of the Word Problem for Finitely Generated Groups PDF Author: Noel Brady
Publisher: Springer Science & Business Media
ISBN: 3764379502
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
The origins of the word problem are in group theory, decidability and complexity. But through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry. This book contains accounts of many recent developments in Geometric Group Theory and shows the interaction between the word problem and geometry continues to be a central theme. It contains many figures, numerous exercises and open questions.

Combinatorial Group Theory and Applications to Geometry

Combinatorial Group Theory and Applications to Geometry PDF Author: D.J. Collins
Publisher: Springer Science & Business Media
ISBN: 9783540637042
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996

Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems

Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems PDF Author: Denis V. Osin
Publisher: American Mathematical Soc.
ISBN: 0821838210
Category : Mathematics
Languages : en
Pages : 114

Get Book Here

Book Description
In this the authors obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows them to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. There is also an introduction and study of the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve somenatural algorithmic problems.

The Geometry and Topology of Coxeter Groups. (LMS-32)

The Geometry and Topology of Coxeter Groups. (LMS-32) PDF Author: Michael W. Davis
Publisher: Princeton University Press
ISBN: 1400845947
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.

Complexity and Randomness in Group Theory

Complexity and Randomness in Group Theory PDF Author: Frédérique Bassino
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110667029
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
Detailed Description

Office Hours with a Geometric Group Theorist

Office Hours with a Geometric Group Theorist PDF Author: Matt Clay
Publisher: Princeton University Press
ISBN: 1400885396
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.

Invitations to Geometry and Topology

Invitations to Geometry and Topology PDF Author: Martin R. Bridson
Publisher:
ISBN: 9780198507727
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.

Self-Similar Groups

Self-Similar Groups PDF Author: Volodymyr Nekrashevych
Publisher: American Mathematical Soc.
ISBN: 0821838318
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.

Non-commutative Cryptography and Complexity of Group-theoretic Problems

Non-commutative Cryptography and Complexity of Group-theoretic Problems PDF Author: Alexei G. Myasnikov
Publisher: American Mathematical Soc.
ISBN: 0821853600
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
Examines the relationship between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups can be used in public key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory.

Groups, Languages, Algorithms

Groups, Languages, Algorithms PDF Author: Alexandre Borovik
Publisher: American Mathematical Soc.
ISBN: 0821836188
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Since the pioneering works of Novikov and Maltsev, group theory has been a testing ground for mathematical logic in its many manifestations, from the theory of algorithms to model theory. The interaction between logic and group theory led to many prominent results which enriched both disciplines. This volume reflects the major themes of the American Mathematical Society/Association for Symbolic Logic Joint Special Session (Baltimore, MD), Interactions between Logic, Group Theory and Computer Science. Included are papers devoted to the development of techniques used for the interaction of group theory and logic. It is suitable for graduate students and researchers interested in algorithmic and combinatorial group theory. A complement to this work is Volume 349 in the AMS series, Contemporary Mathematics, Computational and Experimental Group Theory, which arose from the same meeting and concentrates on the interaction of group theory and computer science.