The Explanatory Power of Models

The Explanatory Power of Models PDF Author: Robert Franck
Publisher: Springer Science & Business Media
ISBN: 1402046766
Category : Political Science
Languages : en
Pages : 305

Get Book Here

Book Description
This book progressively works out a method of constructing models which can bridge the gap between empirical and theoretical research in the social sciences. It aims to improve the explanatory power of models. The issue is quite novel, and has benefited from a thorough examination of statistical and mathematical models, conceptual models, diagrams and maps, machines, computer simulations, and artificial neural networks.

The Explanatory Power of Models

The Explanatory Power of Models PDF Author: Robert Franck
Publisher: Springer Science & Business Media
ISBN: 1402046766
Category : Political Science
Languages : en
Pages : 305

Get Book Here

Book Description
This book progressively works out a method of constructing models which can bridge the gap between empirical and theoretical research in the social sciences. It aims to improve the explanatory power of models. The issue is quite novel, and has benefited from a thorough examination of statistical and mathematical models, conceptual models, diagrams and maps, machines, computer simulations, and artificial neural networks.

Explanatory Model Analysis

Explanatory Model Analysis PDF Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R

Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R PDF Author: Joseph F. Hair Jr.
Publisher: Springer Nature
ISBN: 3030805190
Category : Business & Economics
Languages : en
Pages : 208

Get Book Here

Book Description
Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.

Joint Species Distribution Modelling

Joint Species Distribution Modelling PDF Author: Otso Ovaskainen
Publisher: Cambridge University Press
ISBN: 1108492460
Category : Nature
Languages : en
Pages : 389

Get Book Here

Book Description
A comprehensive account of joint species distribution modelling, covering statistical analyses in light of modern community ecology theory.

Ontology, Epistemology, and Teleology for Modeling and Simulation

Ontology, Epistemology, and Teleology for Modeling and Simulation PDF Author: Andreas Tolk
Publisher: Springer Science & Business Media
ISBN: 3642311407
Category : Technology & Engineering
Languages : en
Pages : 379

Get Book Here

Book Description
In this book, internationally recognized experts in philosophy of science, computer science, and modeling and simulation are contributing to the discussion on how ontology, epistemology, and teleology will contribute to enable the next generation of intelligent modeling and simulation applications. It is well understood that a simulation can provide the technical means to display the behavior of a system over time, including following observed trends to predict future possible states, but how reliable and trustworthy are such predictions? The questions about what we can know (ontology), how we gain new knowledge (epistemology), and what we do with this knowledge (teleology) are therefore illuminated from these very different perspectives, as each experts uses a different facet to look at these challenges. The result of bringing these perspectives into one book is a challenging compendium that gives room for a spectrum of challenges: from general philosophy questions, such as can we use modeling and simulation and other computational means at all to discover new knowledge, down to computational methods to improve semantic interoperability between systems or methods addressing how to apply the recent insights of service oriented approaches to support distributed artificial intelligence. As such, this book has been compiled as an entry point to new domains for students, scholars, and practitioners and to raise the curiosity in them to learn more to fully address the topics of ontology, epistemology, and teleology from philosophical, computational, and conceptual viewpoints.

Ecological Models and Data in R

Ecological Models and Data in R PDF Author: Benjamin M. Bolker
Publisher: Princeton University Press
ISBN: 0691125228
Category : Computers
Languages : en
Pages : 408

Get Book Here

Book Description
Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

Ambitious Science Teaching

Ambitious Science Teaching PDF Author: Mark Windschitl
Publisher: Harvard Education Press
ISBN: 1682531643
Category : Education
Languages : en
Pages : 483

Get Book Here

Book Description
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.

Statistical modeling : a fresh approach

Statistical modeling : a fresh approach PDF Author: Daniel Theodore Kaplan
Publisher:
ISBN: 9780983965879
Category : Mathematical statistics
Languages : en
Pages : 388

Get Book Here

Book Description
"Statistical Modeling: A Fresh Approach introduces and illuminates the statistical reasoning used in modern research throughout the natural and social sciences, medicine, government, and commerce. It emphasizes the use of models to untangle and quantify variation in observed data. By a deft and concise use of computing coupled with an innovative geometrical presentation of the relationship among variables. A Fresh Approach reveals the logic of statistical inference and empowers the reader to use and understand techniques such as analysis of covariance that appear widely in published research but are hardly ever found in introductory texts."-- book cover

Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Multiple Regression and Beyond

Multiple Regression and Beyond PDF Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 655

Get Book Here

Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources