The Ethical Governance of Artificial Intelligence and Machine Learning in Healthcare

The Ethical Governance of Artificial Intelligence and Machine Learning in Healthcare PDF Author: Tina Nguyen
Publisher: Ethics International Press
ISBN: 180441106X
Category : Medical
Languages : en
Pages : 229

Get Book Here

Book Description
This book explores the ethical governance of Artificial Intelligence (AI) & Machine Learning (ML) in healthcare. AI/ML usage in healthcare as well as our daily lives is not new. However, the direct, and oftentimes long-term effects of current technologies, in addition to the onset of future innovations, have caused much debate about the safety of AI/ML. On the one hand, AI/ML has the potential to provide effective and efficient care to patients, and this sways the argument in favor of continuing to use AI/ML; but on the other hand, the dangers (including unforeseen future consequences of the further development of the technology) leads to vehement disagreement with further AI/ML usage. Due to its potential for beneficial outcomes, the book opts to push for ethical AI/ML to be developed and examines various areas in healthcare, such as big data analytics and clinical decision-making, to uncover and discuss the importance of developing ethical governance for AI/ML in this setting.

The Ethical Governance of Artificial Intelligence and Machine Learning in Healthcare

The Ethical Governance of Artificial Intelligence and Machine Learning in Healthcare PDF Author: Tina Nguyen
Publisher: Ethics International Press
ISBN: 180441106X
Category : Medical
Languages : en
Pages : 229

Get Book Here

Book Description
This book explores the ethical governance of Artificial Intelligence (AI) & Machine Learning (ML) in healthcare. AI/ML usage in healthcare as well as our daily lives is not new. However, the direct, and oftentimes long-term effects of current technologies, in addition to the onset of future innovations, have caused much debate about the safety of AI/ML. On the one hand, AI/ML has the potential to provide effective and efficient care to patients, and this sways the argument in favor of continuing to use AI/ML; but on the other hand, the dangers (including unforeseen future consequences of the further development of the technology) leads to vehement disagreement with further AI/ML usage. Due to its potential for beneficial outcomes, the book opts to push for ethical AI/ML to be developed and examines various areas in healthcare, such as big data analytics and clinical decision-making, to uncover and discuss the importance of developing ethical governance for AI/ML in this setting.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Oxford Handbook of Ethics of AI

Oxford Handbook of Ethics of AI PDF Author: Markus D. Dubber
Publisher: Oxford University Press
ISBN: 0190067411
Category : Law
Languages : en
Pages : 1000

Get Book Here

Book Description
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."

Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare PDF Author: Arjun Panesar
Publisher: Apress
ISBN: 1484237994
Category : Computers
Languages : en
Pages : 390

Get Book Here

Book Description
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.

Artificial Intelligence in Healthcare and Medicine

Artificial Intelligence in Healthcare and Medicine PDF Author: Kayvan Najarian
Publisher: CRC Press
ISBN: 1000565815
Category : Computers
Languages : en
Pages : 300

Get Book Here

Book Description
This book provides a comprehensive overview of the recent developments in clinical decision support systems, precision health, and data science in medicine. The book targets clinical researchers and computational scientists seeking to understand the recent advances of artificial intelligence (AI) in health and medicine. Since AI and its applications are believed to have the potential to revolutionize healthcare and medicine, there is a clear need to explore and investigate the state-of-the-art advancements in the field. This book provides a detailed description of the advancements, challenges, and opportunities of using AI in medical and health applications. Over 10 case studies are included in the book that cover topics related to biomedical image processing, machine learning for healthcare, clinical decision support systems, visualization of high dimensional data, data security and privacy, bioinformatics, and biometrics. The book is intended for clinical researchers and computational scientists seeking to understand the recent advances of AI in health and medicine. Many universities may use the book as a secondary training text. Companies in the healthcare sector can greatly benefit from the case studies covered in the book. Moreover, this book also: Provides an overview of the recent developments in clinical decision support systems, precision health, and data science in medicine Examines the advancements, challenges, and opportunities of using AI in medical and health applications Includes 10 cases for practical application and reference Kayvan Najarian is a Professor in the Department of Computational Medicine and Bioinformatics, Department of Electrical Engineering and Computer Science, and Department of Emergency Medicine at the University of Michigan, Ann Arbor. Delaram Kahrobaei is the University Dean for Research at City University of New York (CUNY), a Professor of Computer Science and Mathematics, Queens College CUNY, and the former Chair of Cyber Security, University of York. Enrique Domínguez is a professor in the Department of Computer Science at the University of Malaga and a member of the Biomedical Research Institute of Malaga. Reza Soroushmehr is a Research Assistant Professor in the Department of Computational Medicine and Bioinformatics and a member of the Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor.

Artificial Intelligence for a Better Future

Artificial Intelligence for a Better Future PDF Author: Bernd Carsten Stahl
Publisher: Springer Nature
ISBN: 3030699781
Category : Computers
Languages : en
Pages : 128

Get Book Here

Book Description
This open access book proposes a novel approach to Artificial Intelligence (AI) ethics. AI offers many advantages: better and faster medical diagnoses, improved business processes and efficiency, and the automation of boring work. But undesirable and ethically problematic consequences are possible too: biases and discrimination, breaches of privacy and security, and societal distortions such as unemployment, economic exploitation and weakened democratic processes. There is even a prospect, ultimately, of super-intelligent machines replacing humans. The key question, then, is: how can we benefit from AI while addressing its ethical problems? This book presents an innovative answer to the question by presenting a different perspective on AI and its ethical consequences. Instead of looking at individual AI techniques, applications or ethical issues, we can understand AI as a system of ecosystems, consisting of numerous interdependent technologies, applications and stakeholders. Developing this idea, the book explores how AI ecosystems can be shaped to foster human flourishing. Drawing on rich empirical insights and detailed conceptual analysis, it suggests practical measures to ensure that AI is used to make the world a better place.

An Examination of Emerging Bioethical Issues in Biomedical Research

An Examination of Emerging Bioethical Issues in Biomedical Research PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309676630
Category : Medical
Languages : en
Pages : 133

Get Book Here

Book Description
On February 26, 2020, the Board on Health Sciences Policy of the National Academies of Sciences, Engineering, and Medicine hosted a 1-day public workshop in Washington, DC, to examine current and emerging bioethical issues that might arise in the context of biomedical research and to consider research topics in bioethics that could benefit from further attention. The scope of bioethical issues in research is broad, but this workshop focused on issues related to the development and use of digital technologies, artificial intelligence, and machine learning in research and clinical practice; issues emerging as nontraditional approaches to health research become more widespread; the role of bioethics in addressing racial and structural inequalities in health; and enhancing the capacity and diversity of the bioethics workforce. This publication summarizes the presentations and discussions from the workshop.

Responsible Artificial Intelligence

Responsible Artificial Intelligence PDF Author: Virginia Dignum
Publisher: Springer Nature
ISBN: 3030303713
Category : Computers
Languages : en
Pages : 133

Get Book Here

Book Description
In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging PDF Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369

Get Book Here

Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Legal Frameworks for EHealth

Legal Frameworks for EHealth PDF Author: World Health Organization
Publisher: Global Observatory for eHealth
ISBN: 9789241503143
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
Given that privacy of the doctor-patient relationship is at the heart of good health care, and that the electronic health record (EHR) is at the heart of good eHealth practice, the question arises: Is privacy legislation at the heart of the EHR? The second global survey on eHealth conducted by the Global Observatory for eHealth (GOe) set out to answer that question by investigating the extent to which the legal frameworks in the Member States of the World Health Organization (WHO) address the need to protect patient privacy in EHRs as health care systems move towards leveraging the power of EHRs to deliver safer, more efficient, and more accessible health care. The survey began with a question on the existence of generic privacy legislation followed by questions to establish if specific rules had been adopted to address privacy in EHRs. A series of questions followed pertaining to the way in which privacy is addressed in transmittable EHRs and patients rights to access, correct, and control the use of the EHR. The investigation ended by broaching the issue of privacy protection in secondary uses of data contained in EHRs, such as for international research purposes. In the present report the analysis of the survey responses is preceded by an overview of the ethical and legal roots of privacy protection. Focusing on the ethical concepts of autonomy, beneficence, and justice, the report reminds the reader of the early recognition of the duty of privacy in the Hippocratic Oath and goes on to consider how that is reflected in international binding legislation such as the United Nations Declaration on Human Rights and the European Union Data Protection Directive, as well as non-binding international codes of practice. The ability to make wide use of EHRs and other eHealth tools will become increasingly important in both developed and developing countries. In the former, EHRs and related eHealth tools will play a key role of providing health care to ageing populations in which social care and health care need to be much more closely connected and where capacity demands will require that care is delivered outside traditional settings such as hospitals. The protection of privacy will also be a significant issue in supporting the changing nature of health care in developing countries, in which mobile eHealth solutions are emerging as an integral part of the health care infrastructure, as demonstrated in the publication mHealth: new horizons for health through mobile technologies.