The Equations of Materials

The Equations of Materials PDF Author: Brian Cantor
Publisher: Oxford University Press
ISBN: 0192592912
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
This primer describes important equations of materials and the scientists who derived them. It provides an excellent introduction to the subject by making the material accessible and enjoyable. The book is dedicated to a number of propositions: 1. The most important equations are often simple and easily explained; 2. The most important equations are often experimental, confirmed time and again; 3. The most important equations have been derived by remarkable scientists who lived interesting lives. Each chapter covers a single equation and materials subject, and is structured in three sections: first, a description of the equation itself; second, a short biography of the scientist after whom it is named; and third, a discussion of some of the ramifications and applications of the equation. The biographical sections intertwine the personal and professional life of the scientist with contemporary political and scientific developments. Topics included are: Bravais lattices and crystals; Bragg's law and diffraction; the Gibbs phase rule and phases; Boltzmann's equation and thermodynamics; the Arrhenius equation and reactions; the Gibbs-Thomson equation and surfaces; Fick's laws and diffusion; the Scheil equation and solidification; the Avrami equation and phase transformations; Hooke's law and elasticity; the Burgers vector and plasticity; Griffith's equation and fracture; and the Fermi level and electrical properties. The book is written for students interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It requires only a working knowledge of school maths, mainly algebra and simple calculus.

The Equations of Materials

The Equations of Materials PDF Author: Brian Cantor
Publisher: Oxford University Press
ISBN: 0192592912
Category : Science
Languages : en
Pages : 288

Get Book Here

Book Description
This primer describes important equations of materials and the scientists who derived them. It provides an excellent introduction to the subject by making the material accessible and enjoyable. The book is dedicated to a number of propositions: 1. The most important equations are often simple and easily explained; 2. The most important equations are often experimental, confirmed time and again; 3. The most important equations have been derived by remarkable scientists who lived interesting lives. Each chapter covers a single equation and materials subject, and is structured in three sections: first, a description of the equation itself; second, a short biography of the scientist after whom it is named; and third, a discussion of some of the ramifications and applications of the equation. The biographical sections intertwine the personal and professional life of the scientist with contemporary political and scientific developments. Topics included are: Bravais lattices and crystals; Bragg's law and diffraction; the Gibbs phase rule and phases; Boltzmann's equation and thermodynamics; the Arrhenius equation and reactions; the Gibbs-Thomson equation and surfaces; Fick's laws and diffusion; the Scheil equation and solidification; the Avrami equation and phase transformations; Hooke's law and elasticity; the Burgers vector and plasticity; Griffith's equation and fracture; and the Fermi level and electrical properties. The book is written for students interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It requires only a working knowledge of school maths, mainly algebra and simple calculus.

The Equations of Materials

The Equations of Materials PDF Author: Brian Cantor
Publisher: Oxford University Press, USA
ISBN: 0198851871
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
This primer describes important equations of materials and the scientists who derived them. It provides an excellent introduction to the subject by making the material accessible and enjoyable. The book is dedicated to a number of propositions: 1. The most important equations are often simple and easily explained; 2. The most important equations are often experimental, confirmed time and again; 3. The most important equations have been derived by remarkable scientists who lived interesting lives. Each chapter covers a single equation and materials subject, and is structured in three sections: first, a description of the equation itself; second, a short biography of the scientist after whom it is named; and third, a discussion of some of the ramifications and applications of the equation. The biographical sections intertwine the personal and professional life of the scientist with contemporary political and scientific developments. Topics included are: Bravais lattices and crystals; Bragg's law and diffraction; the Gibbs phase rule and phases; Boltzmann's equation and thermodynamics; the Arrhenius equation and reactions; the Gibbs-Thomson equation and surfaces; Fick's laws and diffusion; the Scheil equation and solidification; the Avrami equation and phase transformations; Hooke's law and elasticity; the Burgers vector and plasticity; Griffith's equation and fracture; and the Fermi level and electrical properties. The book is written for students interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It requires only a working knowledge of school maths, mainly algebra and simple calculus.

Elasticity and Modeling

Elasticity and Modeling PDF Author: W. F. Chen
Publisher:
ISBN: 9780471091493
Category :
Languages : en
Pages :

Get Book Here

Book Description


Dynamic Behavior of Materials

Dynamic Behavior of Materials PDF Author: Marc A. Meyers
Publisher: John Wiley & Sons
ISBN: 9780471582625
Category : Science
Languages : en
Pages : 694

Get Book Here

Book Description
Addresses fundamentals and advanced topics relevant to the behavior of materials under in-service conditions such as impact, shock, stress and high-strain rate deformations. Deals extensively with materials from a microstructure perspective which is the future direction of research today.

The Equations World

The Equations World PDF Author: Boris Pritsker
Publisher: Courier Dover Publications
ISBN: 048684305X
Category : Mathematics
Languages : en
Pages : 337

Get Book Here

Book Description
Equations are the lifeblood of mathematics, science, and technology, and this book examines equations of all kinds. With his masterful ability to convey the excitement and elegance of mathematics, author Boris Pritsker explores equations from the simplest to the most complex—their history, their charm, and their usefulness in solving problems. The Equations World bridges the fields of algebra, geometry, number theory, and trigonometry, solving more than 280 problems by employing a wide spectrum of techniques. The author demystifies the subject with efficient hints, tricks, and methods that reveal the fun and satisfaction of problem solving. He also demonstrates how equations can serve as important tools for expressing a problem's data, showing the ways in which they assist in fitting parts together to solve the whole puzzle. In addition, brief historical tours reveal the foundations of mathematical thought by tracing the ideas and approaches developed by mathematicians over the centuries. Both recreational mathematicians and ambitious students will find this book an ample source of enlightenment and enjoyment.

The Mathematics of Diffusion

The Mathematics of Diffusion PDF Author: John Crank
Publisher: Oxford University Press
ISBN: 9780198534112
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

Equations and Inequalities

Equations and Inequalities PDF Author: Jiri Herman
Publisher: Springer Science & Business Media
ISBN: 1461212707
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.

Multiparameter Equations of State

Multiparameter Equations of State PDF Author: Roland Span
Publisher: Springer Science & Business Media
ISBN: 3662040921
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
As a basis for printed property charts and tables, empirical multiparameter equa tions of state have been the most important source of accurate thermodynamic property data for more than 30 years now. However, due to increasing demands on the accuracy of thermodynamic property data in computerised calculations as well as the availability of appropriate software tools, and the ever increasing computer power, such formulations are nowadays becoming a valuable tool for everyday work. This development has substantially increased the number of scientists, engi neers, and students who are working with empirical multiparameter equations of state, and it continues to do so. Nevertheless, common knowledge on this kind of thermodynamic property models and on the ongoing progress in this scientific discipline is still very limited. Multiparameter equations of state do not belong to the topics which are taught intensively in thermodynamic courses in engineering and natural sciences and the books and articles where they are published mainly deal with the thermodynamic properties of certain substances rather than with the theoretical background of the used equations of state. In contrast to this, my concern mainly was to give a survey of the theoretical background of multiparameter equations of state both with regard to their application and their development.

The Cahn–Hilliard Equation: Recent Advances and Applications

The Cahn–Hilliard Equation: Recent Advances and Applications PDF Author: Alain Miranville
Publisher: SIAM
ISBN: 1611975921
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
This is the first book to present a detailed discussion of both classical and recent results on the popular Cahn–Hilliard equation and some of its variants. The focus is on mathematical analysis of Cahn–Hilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the Cahn–Hilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.

Unified Constitutive Equations for Creep and Plasticity

Unified Constitutive Equations for Creep and Plasticity PDF Author: A.K. Miller
Publisher: Springer Science & Business Media
ISBN: 9400934394
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
Constitutive equations refer to 'the equations that constitute the material response' at any point within an object. They are one of the ingredients necessary to predict the deformation and fracture response of solid bodies (among other ingredients such as the equations of equilibrium and compatibility and mathematical descriptions of the configuration and loading history). These ingredients are generally combined together in complicated computer programs, such as finite element analyses, which serve to both codify the pertinent knowledge and to provide convenient tools for making predictions of peak stresses, plastic strain ranges, crack growth rates, and other quantities of interest. Such predictions fall largely into two classes: structural analysis and manufacturing analysis. In the first category, the usual purpose is life prediction, for assessment of safety, reliability, durability, and/or operational strategies. Some high-technology systems limited by mechanical behavior, and therefore requiring accurate life assess ments, include rocket engines (the space-shuttle main engine being a prominent example), piping and pressure vessels in nuclear and non-nuclear power plants (for example, heat exchanger tubes in solar central receivers and reformer tubes in high-temperature gas-cooled reactors used for process heat applications), and the ubiquitous example of the jet engine turbine blade. In structural analysis, one is sometimes concerned with predicting distortion per se, but more often, one is concerned with predicting fracture; in these cases the informa tion about deformation is an intermediate result en route to the final goal of a life prediction.