Author: Jorge L. Ramírez Alfonsín
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
The Diophantine Frobenius Problem
Author: Jorge L. Ramírez Alfonsín
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Publisher: Oxford University Press, USA
ISBN: 0198568207
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
The Diophantine Frobenius Problem
Author: Jorge L. Ramírez Alfonsín
Publisher: OUP Oxford
ISBN: 0191524484
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Publisher: OUP Oxford
ISBN: 0191524484
Category : Mathematics
Languages : en
Pages : 260
Book Description
During the early part of the last century, Ferdinand Georg Frobenius (1849-1917) raised he following problem, known as the Frobenius Problem (FP): given relatively prime positive integers a1,...,an, find the largest natural number (called the Frobenius number and denoted by g(a1,...,an) that is not representable as a nonnegative integer combination of a1,...,an, . At first glance FP may look deceptively specialized. Nevertheless it crops up again and again in the most unexpected places and has been extremely useful in investigating many different problems. A number of methods, from several areas of mathematics, have been used in the hope of finding a formula giving the Frobenius number and algorithms to calculate it. The main intention of this book is to highlight such methods, ideas, viewpoints and applications to a broader audience.
Computing the Continuous Discretely
Author: Matthias Beck
Publisher: Springer
ISBN: 9781493938582
Category : Mathematics
Languages : en
Pages : 285
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
Publisher: Springer
ISBN: 9781493938582
Category : Mathematics
Languages : en
Pages : 285
Book Description
This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships between the continuous volume of a polytope and its discrete volume? Reviews of the first edition: “You owe it to yourself to pick up a copy of Computing the Continuous Discretely to read about a number of interesting problems in geometry, number theory, and combinatorics.” — MAA Reviews “The book is written as an accessible and engaging textbook, with many examples, historical notes, pithy quotes, commentary integrating the mate rial, exercises, open problems and an extensive bibliography.” — Zentralblatt MATH “This beautiful book presents, at a level suitable for advanced undergraduates, a fairly complete introduction to the problem of counting lattice points inside a convex polyhedron.” — Mathematical Reviews “Many departments recognize the need for capstone courses in which graduating students can see the tools they have acquired come together in some satisfying way. Beck and Robins have written the perfect text for such a course.” — CHOICE
An Introduction to Diophantine Equations
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Publisher: Springer Science & Business Media
ISBN: 0817645497
Category : Mathematics
Languages : en
Pages : 350
Book Description
This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Developments in Language Theory
Author: Masami Ito
Publisher: Springer
ISBN: 354085780X
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book constitutes the refereed proceedings of the 12th International Conference on Developments in Language Theory, DLT 2008, held in Kyoto, Japan, September 2008. The 36 revised full papers presented together with 6 invited papers were carefully reviewed and selected from 102 submissions. All important issues in language theory are addressed including grammars, acceptors and transducers for words, trees and graphs; algebraic theories of automata; algorithmic, combinatorial and algebraic properties of words and languages; variable length codes; symbolic dynamics; cellular automata; polyominoes and multidimensional patterns; decidability questions; image manipulation and compression; efficient text algorithms; relationships to cryptography, concurrency, complexity theory and logic; bio-inspired computing; quantum computing.
Publisher: Springer
ISBN: 354085780X
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book constitutes the refereed proceedings of the 12th International Conference on Developments in Language Theory, DLT 2008, held in Kyoto, Japan, September 2008. The 36 revised full papers presented together with 6 invited papers were carefully reviewed and selected from 102 submissions. All important issues in language theory are addressed including grammars, acceptors and transducers for words, trees and graphs; algebraic theories of automata; algorithmic, combinatorial and algebraic properties of words and languages; variable length codes; symbolic dynamics; cellular automata; polyominoes and multidimensional patterns; decidability questions; image manipulation and compression; efficient text algorithms; relationships to cryptography, concurrency, complexity theory and logic; bio-inspired computing; quantum computing.
Numerical Semigroups
Author: J.C. Rosales
Publisher: Springer Science & Business Media
ISBN: 1441901604
Category : Mathematics
Languages : en
Pages : 186
Book Description
"Numerical Semigroups" is the first monograph devoted exclusively to the development of the theory of numerical semigroups. This concise, self-contained text is accessible to first year graduate students, giving the full background needed for readers unfamiliar with the topic. Researchers will find the tools presented useful in producing examples and counterexamples in other fields such as algebraic geometry, number theory, and linear programming.
Publisher: Springer Science & Business Media
ISBN: 1441901604
Category : Mathematics
Languages : en
Pages : 186
Book Description
"Numerical Semigroups" is the first monograph devoted exclusively to the development of the theory of numerical semigroups. This concise, self-contained text is accessible to first year graduate students, giving the full background needed for readers unfamiliar with the topic. Researchers will find the tools presented useful in producing examples and counterexamples in other fields such as algebraic geometry, number theory, and linear programming.
Geometric Algorithms and Combinatorial Optimization
Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374
Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374
Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.
Exponential Diophantine Equations
Author: T. N. Shorey
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Handbook of Algorithms and Data Structures
Author: Gaston H. Gonnet
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 304
Book Description
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 304
Book Description
Field Arithmetic
Author: Michael D. Fried
Publisher: Springer Science & Business Media
ISBN: 9783540228110
Category : Computers
Languages : en
Pages : 812
Book Description
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Publisher: Springer Science & Business Media
ISBN: 9783540228110
Category : Computers
Languages : en
Pages : 812
Book Description
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?