Author: Arjen K. Lenstra
Publisher: Springer Science & Business Media
ISBN: 9783540570134
Category : Mathematics
Languages : en
Pages : 152
Book Description
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
The Development of the Number Field Sieve
Author: Arjen K. Lenstra
Publisher: Springer Science & Business Media
ISBN: 9783540570134
Category : Mathematics
Languages : en
Pages : 152
Book Description
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
Publisher: Springer Science & Business Media
ISBN: 9783540570134
Category : Mathematics
Languages : en
Pages : 152
Book Description
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
The Development of the Number Field Sieve
Author: Arjen K. Lenstra
Publisher: Springer
ISBN: 3540478922
Category : Mathematics
Languages : en
Pages : 138
Book Description
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
Publisher: Springer
ISBN: 3540478922
Category : Mathematics
Languages : en
Pages : 138
Book Description
The number field sieve is an algorithm for finding the prime factors of large integers. It depends on algebraic number theory. Proposed by John Pollard in 1988, the method was used in 1990 to factor the ninth Fermat number, a 155-digit integer. The algorithm is most suited to numbers of a special form, but there is a promising variant that applies in general. This volume contains six research papers that describe the operation of the number field sieve, from both theoretical and practical perspectives. Pollard's original manuscript is included. In addition, there is an annotated bibliography of directly related literature.
Topics in Computational Number Theory Inspired by Peter L. Montgomery
Author: Joppe W. Bos
Publisher: Cambridge University Press
ISBN: 1107109353
Category : Language Arts & Disciplines
Languages : en
Pages : 281
Book Description
This book highlights the many ideas and algorithms that Peter L. Montgomery has contributed to computational number theory and cryptography.
Publisher: Cambridge University Press
ISBN: 1107109353
Category : Language Arts & Disciplines
Languages : en
Pages : 281
Book Description
This book highlights the many ideas and algorithms that Peter L. Montgomery has contributed to computational number theory and cryptography.
Algebraic Number Theory
Author: Frazer Jarvis
Publisher: Springer
ISBN: 3319075454
Category : Mathematics
Languages : en
Pages : 298
Book Description
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
Publisher: Springer
ISBN: 3319075454
Category : Mathematics
Languages : en
Pages : 298
Book Description
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
An Introduction to Sieve Methods and Their Applications
Author: Alina Carmen Cojocaru
Publisher: Cambridge University Press
ISBN: 9780521848169
Category : Mathematics
Languages : en
Pages : 250
Book Description
Rather than focus on the technical details which can obscure the beauty of sieve theory, the authors focus on examples and applications, developing the theory in parallel.
Publisher: Cambridge University Press
ISBN: 9780521848169
Category : Mathematics
Languages : en
Pages : 250
Book Description
Rather than focus on the technical details which can obscure the beauty of sieve theory, the authors focus on examples and applications, developing the theory in parallel.
A Course in Computational Algebraic Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
1992 Census of Wholesale Trade
Author:
Publisher:
ISBN:
Category : Electronic government information
Languages : en
Pages : 104
Book Description
Publisher:
ISBN:
Category : Electronic government information
Languages : en
Pages : 104
Book Description
Advances in Cryptology - CRYPTO '99
Author: Michael Wiener
Publisher: Springer
ISBN: 3540484051
Category : Computers
Languages : en
Pages : 653
Book Description
Crypto ’99, the Nineteenth Annual Crypto Conference, was sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department, University of California, Santa Barbara (UCSB). The General Chair, Donald Beaver, was responsible for local organization and registration. The Program Committee considered 167 papers and selected 38 for presentation. This year’s conference program also included two invited lectures. I was pleased to include in the program UeliM aurer’s presentation “Information Theoretic Cryptography” and Martin Hellman’s presentation “The Evolution of Public Key Cryptography.” The program also incorporated the traditional Rump Session for informal short presentations of new results, run by Stuart Haber. These proceedings include the revised versions of the 38 papers accepted by the Program Committee. These papers were selected from all the submissions to the conference based on originality, quality, and relevance to the field of cryptology. Revisions were not checked, and the authors bear full responsibility for the contents of their papers.
Publisher: Springer
ISBN: 3540484051
Category : Computers
Languages : en
Pages : 653
Book Description
Crypto ’99, the Nineteenth Annual Crypto Conference, was sponsored by the International Association for Cryptologic Research (IACR), in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department, University of California, Santa Barbara (UCSB). The General Chair, Donald Beaver, was responsible for local organization and registration. The Program Committee considered 167 papers and selected 38 for presentation. This year’s conference program also included two invited lectures. I was pleased to include in the program UeliM aurer’s presentation “Information Theoretic Cryptography” and Martin Hellman’s presentation “The Evolution of Public Key Cryptography.” The program also incorporated the traditional Rump Session for informal short presentations of new results, run by Stuart Haber. These proceedings include the revised versions of the 38 papers accepted by the Program Committee. These papers were selected from all the submissions to the conference based on originality, quality, and relevance to the field of cryptology. Revisions were not checked, and the authors bear full responsibility for the contents of their papers.
Elementary Number Theory: Primes, Congruences, and Secrets
Author: William Stein
Publisher: Springer Science & Business Media
ISBN: 0387855254
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Publisher: Springer Science & Business Media
ISBN: 0387855254
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Prime Obsession
Author: John Derbyshire
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.