The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3 PDF Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446

Get Book Here

Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3 PDF Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 9780821803912
Category : Finite simple groups
Languages : en
Pages : 446

Get Book Here

Book Description
Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

The Classification of Finite Simple Groups

The Classification of Finite Simple Groups PDF Author: Michael Aschbacher
Publisher: American Mathematical Soc.
ISBN: 0821853368
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.

The Finite Simple Groups

The Finite Simple Groups PDF Author: Robert Wilson
Publisher: Springer Science & Business Media
ISBN: 1848009879
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].

Finite Simple Groups

Finite Simple Groups PDF Author: Daniel Gorenstein
Publisher: Springer Science & Business Media
ISBN: 1468484974
Category : Mathematics
Languages : en
Pages : 339

Get Book Here

Book Description
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.

The Classification of the Finite Simple Groups, Number 7

The Classification of the Finite Simple Groups, Number 7 PDF Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
ISBN: 082184069X
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
The classification of finite simple groups is a landmark result of modern mathematics. The multipart series of monographs which is being published by the AMS (Volume 40.1–40.7 and future volumes) represents the culmination of a century-long project involving the efforts of scores of mathematicians published in hundreds of journal articles, books, and doctoral theses, totaling an estimated 15,000 pages. This part 7 of the series is the middle of a trilogy (Volume 40.5, Volume 40.7, and forthcoming Volume 40.8) treating the Generic Case, i.e., the identification of the alternating groups of degree at least 13 and most of the finite simple groups of Lie type and Lie rank at least 4. Moreover, Volumes 40.4–40.8 of this series will provide a complete treatment of the simple groups of odd type, i.e., the alternating groups (with two exceptions) and the groups of Lie type defined over a finite field of odd order, as well as some of the sporadic simple groups. In particular, this volume completes the construction, begun in Volume 40.5, of a collection of neighboring centralizers of a particularly nice form. All of this is then applied to complete the identification of the alternating groups of degree at least 13. The book is suitable for graduate students and researchers interested in the theory of finite groups.

The Classification of Finite Simple Groups

The Classification of Finite Simple Groups PDF Author: Daniel Gorenstein
Publisher: Springer Science & Business Media
ISBN: 1461336856
Category : Mathematics
Languages : en
Pages : 493

Get Book Here

Book Description
Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.

Classes of Finite Groups

Classes of Finite Groups PDF Author: Adolfo Ballester-Bolinches
Publisher: Springer Science & Business Media
ISBN: 1402047193
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.

Twelve Sporadic Groups

Twelve Sporadic Groups PDF Author: Robert L. Jr. Griess
Publisher: Springer Science & Business Media
ISBN: 9783540627784
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
The 20 sporadics involved in the Monster, the largest sporadic group, constitute the Happy Family. This book is a leisurely and rigorous study of two of their three generations. The level is suitable for graduate students with little background in general finite group theory, established mathematicians and mathematical physicists.

Character Theory of Finite Groups

Character Theory of Finite Groups PDF Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821842293
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.

The Subgroup Structure of the Finite Classical Groups

The Subgroup Structure of the Finite Classical Groups PDF Author: Peter B. Kleidman
Publisher: Cambridge University Press
ISBN: 052135949X
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
With the classification of the finite simple groups complete, much work has gone into the study of maximal subgroups of almost simple groups. In this volume the authors investigate the maximal subgroups of the finite classical groups and present research into these groups as well as proving many new results. In particular, the authors develop a unified treatment of the theory of the 'geometric subgroups' of the classical groups, introduced by Aschbacher, and they answer the questions of maximality and conjugacy and obtain the precise shapes of these groups. Both authors are experts in the field and the book will be of considerable value not only to group theorists, but also to combinatorialists and geometers interested in these techniques and results. Graduate students will find it a very readable introduction to the topic and it will bring them to the very forefront of research in group theory.