Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 1468499386
Category : Mathematics
Languages : en
Pages : 492
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
The Book of Prime Number Records
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 1468499386
Category : Mathematics
Languages : en
Pages : 492
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
Publisher: Springer Science & Business Media
ISBN: 1468499386
Category : Mathematics
Languages : en
Pages : 492
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
The New Book of Prime Number Records
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 1461207592
Category : Mathematics
Languages : en
Pages : 558
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.
Publisher: Springer Science & Business Media
ISBN: 1461207592
Category : Mathematics
Languages : en
Pages : 558
Book Description
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.
The Little Book of Bigger Primes
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387218203
Category : Mathematics
Languages : en
Pages : 370
Book Description
A deep understanding of prime numbers is one of the great challenges in mathematics. In this new edition, fundamental theorems, challenging open problems, and the most recent computational records are presented in a language without secrets. The impressive wealth of material and references will make this book a favorite companion and a source of inspiration to all readers. Paulo Ribenboim is Professor Emeritus at Queen's University in Canada, Fellow of the Royal Society of Canada, and recipient of the George Pólya Award of the Mathematical Association of America. He is the author of 13 books and more than 150 research articles. From the reviews of the First Edition: Number Theory and mathematics as a whole will benefit from having such an accessible book exposing advanced material. There is no question that this book will succeed in exciting many new people to the beauty and fascination of prime numbers, and will probably bring more young people to research in these areas. (Andrew Granville, Zentralblatt)
Publisher: Springer Science & Business Media
ISBN: 0387218203
Category : Mathematics
Languages : en
Pages : 370
Book Description
A deep understanding of prime numbers is one of the great challenges in mathematics. In this new edition, fundamental theorems, challenging open problems, and the most recent computational records are presented in a language without secrets. The impressive wealth of material and references will make this book a favorite companion and a source of inspiration to all readers. Paulo Ribenboim is Professor Emeritus at Queen's University in Canada, Fellow of the Royal Society of Canada, and recipient of the George Pólya Award of the Mathematical Association of America. He is the author of 13 books and more than 150 research articles. From the reviews of the First Edition: Number Theory and mathematics as a whole will benefit from having such an accessible book exposing advanced material. There is no question that this book will succeed in exciting many new people to the beauty and fascination of prime numbers, and will probably bring more young people to research in these areas. (Andrew Granville, Zentralblatt)
Prime Numbers
Author: Richard Crandall
Publisher: Springer Science & Business Media
ISBN: 0387289798
Category : Mathematics
Languages : en
Pages : 597
Book Description
Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
Publisher: Springer Science & Business Media
ISBN: 0387289798
Category : Mathematics
Languages : en
Pages : 597
Book Description
Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
The Distribution of Prime Numbers
Author: Albert Edward Ingham
Publisher: Cambridge University Press
ISBN: 9780521397896
Category : Mathematics
Languages : en
Pages : 140
Book Description
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
Publisher: Cambridge University Press
ISBN: 9780521397896
Category : Mathematics
Languages : en
Pages : 140
Book Description
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
Secret History
Author: Craig Bauer
Publisher: CRC Press
ISBN: 1351668498
Category : Computers
Languages : en
Pages : 801
Book Description
The first edition of this award-winning book attracted a wide audience. This second edition is both a joy to read and a useful classroom tool. Unlike traditional textbooks, it requires no mathematical prerequisites and can be read around the mathematics presented. If used as a textbook, the mathematics can be prioritized, with a book both students and instructors will enjoy reading. Secret History: The Story of Cryptology, Second Edition incorporates new material concerning various eras in the long history of cryptology. Much has happened concerning the political aspects of cryptology since the first edition appeared. The still unfolding story is updated here. The first edition of this book contained chapters devoted to the cracking of German and Japanese systems during World War II. Now the other side of this cipher war is also told, that is, how the United States was able to come up with systems that were never broken. The text is in two parts. Part I presents classic cryptology from ancient times through World War II. Part II examines modern computer cryptology. With numerous real-world examples and extensive references, the author skillfully balances the history with mathematical details, providing readers with a sound foundation in this dynamic field. FEATURES Presents a chronological development of key concepts Includes the Vigenère cipher, the one-time pad, transposition ciphers, Jefferson’s wheel cipher, Playfair cipher, ADFGX, matrix encryption, Enigma, Purple, and other classic methods Looks at the work of Claude Shannon, the origin of the National Security Agency, elliptic curve cryptography, the Data Encryption Standard, the Advanced Encryption Standard, public-key cryptography, and many other topics New chapters detail SIGABA and SIGSALY, successful systems used during World War II for text and speech, respectively Includes quantum cryptography and the impact of quantum computers
Publisher: CRC Press
ISBN: 1351668498
Category : Computers
Languages : en
Pages : 801
Book Description
The first edition of this award-winning book attracted a wide audience. This second edition is both a joy to read and a useful classroom tool. Unlike traditional textbooks, it requires no mathematical prerequisites and can be read around the mathematics presented. If used as a textbook, the mathematics can be prioritized, with a book both students and instructors will enjoy reading. Secret History: The Story of Cryptology, Second Edition incorporates new material concerning various eras in the long history of cryptology. Much has happened concerning the political aspects of cryptology since the first edition appeared. The still unfolding story is updated here. The first edition of this book contained chapters devoted to the cracking of German and Japanese systems during World War II. Now the other side of this cipher war is also told, that is, how the United States was able to come up with systems that were never broken. The text is in two parts. Part I presents classic cryptology from ancient times through World War II. Part II examines modern computer cryptology. With numerous real-world examples and extensive references, the author skillfully balances the history with mathematical details, providing readers with a sound foundation in this dynamic field. FEATURES Presents a chronological development of key concepts Includes the Vigenère cipher, the one-time pad, transposition ciphers, Jefferson’s wheel cipher, Playfair cipher, ADFGX, matrix encryption, Enigma, Purple, and other classic methods Looks at the work of Claude Shannon, the origin of the National Security Agency, elliptic curve cryptography, the Data Encryption Standard, the Advanced Encryption Standard, public-key cryptography, and many other topics New chapters detail SIGABA and SIGSALY, successful systems used during World War II for text and speech, respectively Includes quantum cryptography and the impact of quantum computers
My Numbers, My Friends
Author: Paulo Ribenboim
Publisher: Springer Science & Business Media
ISBN: 0387227547
Category : Mathematics
Languages : en
Pages : 384
Book Description
This selection of expository essays by Paulo Ribenboim should be of interest to mathematicians from all walks. Ribenboim, a highly praised author of several popular titles, writes each essay in a light and humorous language without secrets, making them thoroughly accessible to everyone with an interest in numbers. This new collection includes essays on Fibonacci numbers, prime numbers, Bernoulli numbers, and historical presentations of the main problems pertaining to elementary number theory, such as Kummers work on Fermat's last theorem.
Publisher: Springer Science & Business Media
ISBN: 0387227547
Category : Mathematics
Languages : en
Pages : 384
Book Description
This selection of expository essays by Paulo Ribenboim should be of interest to mathematicians from all walks. Ribenboim, a highly praised author of several popular titles, writes each essay in a light and humorous language without secrets, making them thoroughly accessible to everyone with an interest in numbers. This new collection includes essays on Fibonacci numbers, prime numbers, Bernoulli numbers, and historical presentations of the main problems pertaining to elementary number theory, such as Kummers work on Fermat's last theorem.
The Development of Prime Number Theory
Author: Wladyslaw Narkiewicz
Publisher: Springer Science & Business Media
ISBN: 3662131579
Category : Mathematics
Languages : en
Pages : 457
Book Description
1. People were already interested in prime numbers in ancient times, and the first result concerning the distribution of primes appears in Euclid's Elemen ta, where we find a proof of their infinitude, now regarded as canonical. One feels that Euclid's argument has its place in The Book, often quoted by the late Paul ErdOs, where the ultimate forms of mathematical arguments are preserved. Proofs of most other results on prime number distribution seem to be still far away from their optimal form and the aim of this book is to present the development of methods with which such problems were attacked in the course of time. This is not a historical book since we refrain from giving biographical details of the people who have played a role in this development and we do not discuss the questions concerning why each particular person became in terested in primes, because, usually, exact answers to them are impossible to obtain. Our idea is to present the development of the theory of the distribu tion of prime numbers in the period starting in antiquity and concluding at the end of the first decade of the 20th century. We shall also present some later developments, mostly in short comments, although the reader will find certain exceptions to that rule. The period of the last 80 years was full of new ideas (we mention only the applications of trigonometrical sums or the advent of various sieve methods) and certainly demands a separate book.
Publisher: Springer Science & Business Media
ISBN: 3662131579
Category : Mathematics
Languages : en
Pages : 457
Book Description
1. People were already interested in prime numbers in ancient times, and the first result concerning the distribution of primes appears in Euclid's Elemen ta, where we find a proof of their infinitude, now regarded as canonical. One feels that Euclid's argument has its place in The Book, often quoted by the late Paul ErdOs, where the ultimate forms of mathematical arguments are preserved. Proofs of most other results on prime number distribution seem to be still far away from their optimal form and the aim of this book is to present the development of methods with which such problems were attacked in the course of time. This is not a historical book since we refrain from giving biographical details of the people who have played a role in this development and we do not discuss the questions concerning why each particular person became in terested in primes, because, usually, exact answers to them are impossible to obtain. Our idea is to present the development of the theory of the distribu tion of prime numbers in the period starting in antiquity and concluding at the end of the first decade of the 20th century. We shall also present some later developments, mostly in short comments, although the reader will find certain exceptions to that rule. The period of the last 80 years was full of new ideas (we mention only the applications of trigonometrical sums or the advent of various sieve methods) and certainly demands a separate book.
Prime Numbers
Author: David Wells
Publisher: Turner Publishing Company
ISBN: 1118045718
Category : Mathematics
Languages : en
Pages : 260
Book Description
A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more
Publisher: Turner Publishing Company
ISBN: 1118045718
Category : Mathematics
Languages : en
Pages : 260
Book Description
A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more
Elementary Number Theory in Nine Chapters
Author: James J. Tattersall
Publisher: Cambridge University Press
ISBN: 9780521585316
Category : Mathematics
Languages : en
Pages : 420
Book Description
This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
Publisher: Cambridge University Press
ISBN: 9780521585316
Category : Mathematics
Languages : en
Pages : 420
Book Description
This book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.