The Art of Proof

The Art of Proof PDF Author: Matthias Beck
Publisher: Springer Science & Business Media
ISBN: 1441970231
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.

Proof and the Art of Mathematics

Proof and the Art of Mathematics PDF Author: Joel David Hamkins
Publisher: MIT Press
ISBN: 0262362562
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.

Proofs that Really Count

Proofs that Really Count PDF Author: Arthur T. Benjamin
Publisher: American Mathematical Society
ISBN: 1470472597
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.

Proofs from THE BOOK

Proofs from THE BOOK PDF Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.

Gödel's Theorems and Zermelo's Axioms

Gödel's Theorems and Zermelo's Axioms PDF Author: Lorenz Halbeisen
Publisher: Springer Nature
ISBN: 3030522792
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
This book provides a concise and self-contained introduction to the foundations of mathematics. The first part covers the fundamental notions of mathematical logic, including logical axioms, formal proofs and the basics of model theory. Building on this, in the second and third part of the book the authors present detailed proofs of Gödel’s classical completeness and incompleteness theorems. In particular, the book includes a full proof of Gödel’s second incompleteness theorem which states that it is impossible to prove the consistency of arithmetic within its axioms. The final part is dedicated to an introduction into modern axiomatic set theory based on the Zermelo’s axioms, containing a presentation of Gödel’s constructible universe of sets. A recurring theme in the whole book consists of standard and non-standard models of several theories, such as Peano arithmetic, Presburger arithmetic and the real numbers. The book addresses undergraduate mathematics students and is suitable for a one or two semester introductory course into logic and set theory. Each chapter concludes with a list of exercises.

How to Prove It

How to Prove It PDF Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401

Get Book Here

Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Journey into Mathematics

Journey into Mathematics PDF Author: Joseph J. Rotman
Publisher: Courier Corporation
ISBN: 0486151689
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.

A Logical Introduction to Proof

A Logical Introduction to Proof PDF Author: Daniel W. Cunningham
Publisher: Springer Science & Business Media
ISBN: 1461436311
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

99 Variations on a Proof

99 Variations on a Proof PDF Author: Philip Ording
Publisher: Princeton University Press
ISBN: 0691218978
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.

Ways of Proof Theory

Ways of Proof Theory PDF Author: Ralf Schindler
Publisher: Walter de Gruyter
ISBN: 3110324903
Category : Philosophy
Languages : en
Pages : 495

Get Book Here

Book Description
On the occasion of the retirement of Wolfram Pohlers the Institut für Mathematische Logik und Grundlagenforschung of the University of Münster organized a colloquium and a workshop which took place July 17 – 19, 2008. This event brought together proof theorists from many parts of the world who have been acting as teachers, students and collaborators of Wolfram Pohlers and who have been shaping the field of proof theory over the years. The present volume collects papers by the speakers of the colloquium and workshop; and they produce a documentation of the state of the art of contemporary proof theory.