Author: José Ferreirós Domínguez
Publisher: Oxford University Press, USA
ISBN: 0198567936
Category : Mathematics
Languages : en
Pages : 455
Book Description
Aimed at both students and researchers in philosophy, mathematics and the history of science, this edited volume, authored by leading scholars, highlights foremost developments in both the philosophy and history of modern mathematics.
The Architecture of Modern Mathematics
Author: José Ferreirós Domínguez
Publisher: Oxford University Press, USA
ISBN: 0198567936
Category : Mathematics
Languages : en
Pages : 455
Book Description
Aimed at both students and researchers in philosophy, mathematics and the history of science, this edited volume, authored by leading scholars, highlights foremost developments in both the philosophy and history of modern mathematics.
Publisher: Oxford University Press, USA
ISBN: 0198567936
Category : Mathematics
Languages : en
Pages : 455
Book Description
Aimed at both students and researchers in philosophy, mathematics and the history of science, this edited volume, authored by leading scholars, highlights foremost developments in both the philosophy and history of modern mathematics.
Concepts of Modern Mathematics
Author: Ian Stewart
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Publisher: Courier Corporation
ISBN: 0486134954
Category : Mathematics
Languages : en
Pages : 367
Book Description
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Architecture and Mathematics in Ancient Egypt
Author: Corinna Rossi
Publisher: Cambridge University Press
ISBN: 1107320518
Category : Social Science
Languages : en
Pages : 400
Book Description
In this fascinating study, architect and Egyptologist Corinna Rossi analyses the relationship between mathematics and architecture in ancient Egypt by exploring the use of numbers and geometrical figures in ancient architectural projects and buildings. While previous architectural studies have searched for abstract 'universal rules' to explain the history of Egyptian architecture, Rossi attempts to reconcile the different approaches of archaeologists, architects and historians of mathematics into a single coherent picture. Using a study of a specific group of monuments, the pyramids, and placing them in the context of their cultural and historical background, Rossi argues that theory and practice of construction must be considered as a continuum, not as two separated fields, in order to allow the original planning process of a building to re-emerge. Highly illustrated with plans, diagrams and figures, this book is essential reading for all scholars of Ancient Egypt and the architecture of ancient cultures.
Publisher: Cambridge University Press
ISBN: 1107320518
Category : Social Science
Languages : en
Pages : 400
Book Description
In this fascinating study, architect and Egyptologist Corinna Rossi analyses the relationship between mathematics and architecture in ancient Egypt by exploring the use of numbers and geometrical figures in ancient architectural projects and buildings. While previous architectural studies have searched for abstract 'universal rules' to explain the history of Egyptian architecture, Rossi attempts to reconcile the different approaches of archaeologists, architects and historians of mathematics into a single coherent picture. Using a study of a specific group of monuments, the pyramids, and placing them in the context of their cultural and historical background, Rossi argues that theory and practice of construction must be considered as a continuum, not as two separated fields, in order to allow the original planning process of a building to re-emerge. Highly illustrated with plans, diagrams and figures, this book is essential reading for all scholars of Ancient Egypt and the architecture of ancient cultures.
Formulations
Author: Andrew Witt
Publisher: MIT Press
ISBN: 0262543001
Category : Architecture
Languages : en
Pages : 385
Book Description
An investigation of mathematics as it was drawn, encoded, imagined, and interpreted by architects on the eve of digitization in the mid-twentieth century. In Formulations, Andrew Witt examines the visual, methodological, and cultural intersections between architecture and mathematics. The linkages Witt explores involve not the mystic transcendence of numbers invoked throughout architectural history, but rather architecture’s encounters with a range of calculational systems—techniques that architects inventively retooled for design. Witt offers a catalog of mid-twentieth-century practices of mathematical drawing and calculation in design that preceded and anticipated digitization as well as an account of the formal compendia that became a cultural currency shared between modern mathematicians and modern architects. Witt presents a series of extensively illustrated “biographies of method”—episodes that chart the myriad ways in which mathematics, particularly the mathematical notion of modeling and drawing, was spliced into the creative practice of design. These include early drawing machines that mechanized curvature; the incorporation of geometric maquettes—“theorems made flesh”—into the toolbox of design; the virtualization of buildings and landscapes through surveyed triangulation and photogrammetry; formal and functional topology; stereoscopic drawing; the economic implications of cubic matrices; and a strange synthesis of the technological, mineral, and biological: crystallographic design. Trained in both architecture and mathematics, Witt uses mathematics as a lens through which to understand the relationship between architecture and a much broader set of sciences and visual techniques. Through an intercultural exchange with other disciplines, he argues, architecture adapted not only the shapes and surfaces of mathematics but also its values and epistemic ideals.
Publisher: MIT Press
ISBN: 0262543001
Category : Architecture
Languages : en
Pages : 385
Book Description
An investigation of mathematics as it was drawn, encoded, imagined, and interpreted by architects on the eve of digitization in the mid-twentieth century. In Formulations, Andrew Witt examines the visual, methodological, and cultural intersections between architecture and mathematics. The linkages Witt explores involve not the mystic transcendence of numbers invoked throughout architectural history, but rather architecture’s encounters with a range of calculational systems—techniques that architects inventively retooled for design. Witt offers a catalog of mid-twentieth-century practices of mathematical drawing and calculation in design that preceded and anticipated digitization as well as an account of the formal compendia that became a cultural currency shared between modern mathematicians and modern architects. Witt presents a series of extensively illustrated “biographies of method”—episodes that chart the myriad ways in which mathematics, particularly the mathematical notion of modeling and drawing, was spliced into the creative practice of design. These include early drawing machines that mechanized curvature; the incorporation of geometric maquettes—“theorems made flesh”—into the toolbox of design; the virtualization of buildings and landscapes through surveyed triangulation and photogrammetry; formal and functional topology; stereoscopic drawing; the economic implications of cubic matrices; and a strange synthesis of the technological, mineral, and biological: crystallographic design. Trained in both architecture and mathematics, Witt uses mathematics as a lens through which to understand the relationship between architecture and a much broader set of sciences and visual techniques. Through an intercultural exchange with other disciplines, he argues, architecture adapted not only the shapes and surfaces of mathematics but also its values and epistemic ideals.
The Mathematics of the Ideal Villa and Other Essays
Author: Colin Rowe
Publisher: MIT Press
ISBN: 9780262680370
Category : Architecture
Languages : en
Pages : 244
Book Description
This collection of an important architectural theorist's essays considers and compares designs by Palladio and Le Corbusier, discusses mannerism and modern architecture, architectural vocabulary in the 19th century, the architecture of Chicago, neoclassicism and modern architecture, and the architecture of utopia.
Publisher: MIT Press
ISBN: 9780262680370
Category : Architecture
Languages : en
Pages : 244
Book Description
This collection of an important architectural theorist's essays considers and compares designs by Palladio and Le Corbusier, discusses mannerism and modern architecture, architectural vocabulary in the 19th century, the architecture of Chicago, neoclassicism and modern architecture, and the architecture of utopia.
New Mathematics of Architecture
Author: Jane Burry
Publisher: National Geographic Books
ISBN: 0500290253
Category : Architecture
Languages : en
Pages : 0
Book Description
This carefully researched survey examines how architects now use digital tools and physics to build spatial constructs that would have been inconceivable even ten years ago. Architecture has always relied on mathematics to achieve visual harmony, structural integrity, and logical construction. Now digital tools and an increasing interest in physics have given architects the means to describe and build spatial constructs that would have been inconceivable even ten years ago. This carefully researched survey of forty-six international projects offers an overview of how different strategies are being employed through accessible illustrations and clear text. Each section presents case studies of projects by globally recognized architects in diagrams, photographs, and texts.
Publisher: National Geographic Books
ISBN: 0500290253
Category : Architecture
Languages : en
Pages : 0
Book Description
This carefully researched survey examines how architects now use digital tools and physics to build spatial constructs that would have been inconceivable even ten years ago. Architecture has always relied on mathematics to achieve visual harmony, structural integrity, and logical construction. Now digital tools and an increasing interest in physics have given architects the means to describe and build spatial constructs that would have been inconceivable even ten years ago. This carefully researched survey of forty-six international projects offers an overview of how different strategies are being employed through accessible illustrations and clear text. Each section presents case studies of projects by globally recognized architects in diagrams, photographs, and texts.
The Architecture of Modern Mathematics
Author: Jeremy Gray
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 442
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 442
Book Description
Modern Mathematics
Author: Dirk De Bock
Publisher: Springer Nature
ISBN: 3031111664
Category : Education
Languages : en
Pages : 615
Book Description
The international New Math developments between about 1950 through 1980, are regarded by many mathematics educators and education historians as the most historically important development in curricula of the twentieth century. It attracted the attention of local and international politicians, of teachers, and of parents, and influenced the teaching and learning of mathematics at all levels—kindergarten to college graduate—in many nations. After garnering much initial support it began to attract criticism. But, as Bill Jacob and the late Jerry Becker show in Chapter 17, some of the effects became entrenched. This volume, edited by Professor Dirk De Bock, of Belgium, provides an outstanding overview of the New Math/modern mathematics movement. Chapter authors provide exceptionally high-quality analyses of the rise of the movement, and of subsequent developments, within a range of nations. The first few chapters show how the initial leadership came from mathematicians in European nations and in the United States of America. The background leaders in Europe were Caleb Gattegno and members of a mysterious group of mainly French pure mathematicians, who since the 1930s had published under the name of (a fictitious) “Nicolas Bourbaki.” In the United States, there emerged, during the 1950s various attempts to improve U.S. mathematics curricula and teaching, especially in secondary schools and colleges. This side of the story climaxed in 1957 when the Soviet Union succeeded in launching “Sputnik,” the first satellite. Undoubtedly, this is a landmark publication in education. The foreword was written by Professor Bob Moon, one of a few other scholars to have written on the New Math from an international perspective. The final “epilogue” chapter, by Professor Geert Vanpaemel, a historian, draws together the overall thrust of the volume, and makes links with the general history of curriculum development, especially in science education, including recent globalization trends.
Publisher: Springer Nature
ISBN: 3031111664
Category : Education
Languages : en
Pages : 615
Book Description
The international New Math developments between about 1950 through 1980, are regarded by many mathematics educators and education historians as the most historically important development in curricula of the twentieth century. It attracted the attention of local and international politicians, of teachers, and of parents, and influenced the teaching and learning of mathematics at all levels—kindergarten to college graduate—in many nations. After garnering much initial support it began to attract criticism. But, as Bill Jacob and the late Jerry Becker show in Chapter 17, some of the effects became entrenched. This volume, edited by Professor Dirk De Bock, of Belgium, provides an outstanding overview of the New Math/modern mathematics movement. Chapter authors provide exceptionally high-quality analyses of the rise of the movement, and of subsequent developments, within a range of nations. The first few chapters show how the initial leadership came from mathematicians in European nations and in the United States of America. The background leaders in Europe were Caleb Gattegno and members of a mysterious group of mainly French pure mathematicians, who since the 1930s had published under the name of (a fictitious) “Nicolas Bourbaki.” In the United States, there emerged, during the 1950s various attempts to improve U.S. mathematics curricula and teaching, especially in secondary schools and colleges. This side of the story climaxed in 1957 when the Soviet Union succeeded in launching “Sputnik,” the first satellite. Undoubtedly, this is a landmark publication in education. The foreword was written by Professor Bob Moon, one of a few other scholars to have written on the New Math from an international perspective. The final “epilogue” chapter, by Professor Geert Vanpaemel, a historian, draws together the overall thrust of the volume, and makes links with the general history of curriculum development, especially in science education, including recent globalization trends.
Math and Architectures of Deep Learning
Author: Krishnendu Chaudhury
Publisher: Simon and Schuster
ISBN: 1617296481
Category : Computers
Languages : en
Pages : 550
Book Description
Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.
Publisher: Simon and Schuster
ISBN: 1617296481
Category : Computers
Languages : en
Pages : 550
Book Description
Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.
Connections Between Mathematics, the Arts and Architecture
Author: Nicoletta Sala
Publisher: Nova Science Publishers
ISBN: 9781536151954
Category : Architecture
Languages : en
Pages : 0
Book Description
The purpose of this book is to analyze the interdisciplinary aspects of mathematics and geometry in reference to nature, art, and architecture.In Chapter 1, we introduce symmetry and its different meanings. Symmetry is a notion, which has been applied in the arts and architecture to find harmony and beauty. It joins aesthetics and practice, science and economy, mathematics and philosophy. In this chapter, we also analyze the influence of Vitruvius and the concept of old symmetry, received by the Renaissance. It is also interesting to note how in contemporary architecture there is often the presence of the "break" of symmetry (for example in the Frank O. Gehry's works).Chapter 2 explains how proportions, and in particular, the golden section, has introduced aesthetic canons that have strongly influenced many artists like Polycletus, and architects, from Ictinus to Le Corbusier.In Chapter 3, we discover how curves and spirals find their application in artistic works, for example in Mycenaean jewelry, and architectural works, from the Baroque of Francesco Borromini to the Land Art of Smithson.Chapter 4 presents the importance and influence that Platonic solids and polyhedrons have had on philosophy and art through different historical periods and different cultures. For instance, we look at how Platonic solids are connected to the theory of Empedocles' elements and Hippocrates' theory of humors.Chapter 5 describes surfaces, discovering how different cultures have used them in different manners, including Roman aqueducts, iron bridges, and finally arriving on modern structures that base their forms on hyperboloids and paraboloids.In Chapter 6, we introduce fractal geometry, as a geometry that tries to explain nature's irregular shapes, trying to overcome the limitations imposed by "old" Euclidean geometry. We also analyze how fractal geometry has influenced architecture in this century.
Publisher: Nova Science Publishers
ISBN: 9781536151954
Category : Architecture
Languages : en
Pages : 0
Book Description
The purpose of this book is to analyze the interdisciplinary aspects of mathematics and geometry in reference to nature, art, and architecture.In Chapter 1, we introduce symmetry and its different meanings. Symmetry is a notion, which has been applied in the arts and architecture to find harmony and beauty. It joins aesthetics and practice, science and economy, mathematics and philosophy. In this chapter, we also analyze the influence of Vitruvius and the concept of old symmetry, received by the Renaissance. It is also interesting to note how in contemporary architecture there is often the presence of the "break" of symmetry (for example in the Frank O. Gehry's works).Chapter 2 explains how proportions, and in particular, the golden section, has introduced aesthetic canons that have strongly influenced many artists like Polycletus, and architects, from Ictinus to Le Corbusier.In Chapter 3, we discover how curves and spirals find their application in artistic works, for example in Mycenaean jewelry, and architectural works, from the Baroque of Francesco Borromini to the Land Art of Smithson.Chapter 4 presents the importance and influence that Platonic solids and polyhedrons have had on philosophy and art through different historical periods and different cultures. For instance, we look at how Platonic solids are connected to the theory of Empedocles' elements and Hippocrates' theory of humors.Chapter 5 describes surfaces, discovering how different cultures have used them in different manners, including Roman aqueducts, iron bridges, and finally arriving on modern structures that base their forms on hyperboloids and paraboloids.In Chapter 6, we introduce fractal geometry, as a geometry that tries to explain nature's irregular shapes, trying to overcome the limitations imposed by "old" Euclidean geometry. We also analyze how fractal geometry has influenced architecture in this century.