The Andrews Festschrift

The Andrews Festschrift PDF Author: Dominique Foata
Publisher: Springer Science & Business Media
ISBN: 3642565131
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This book contains seventeen contributions made to George Andrews on the occasion of his sixtieth birthday, ranging from classical number theory (the theory of partitions) to classical and algebraic combinatorics. Most of the papers were read at the 42nd session of the Sminaire Lotharingien de Combinatoire that took place at Maratea, Basilicata, in August 1998. This volume contains a long memoir on Ramanujan's Unpublished Manuscript and the Tau functions studied with a contemporary eye, together with several papers dealing with the theory of partitions. There is also a description of a maple package to deal with general q-calculus. More subjects on algebraic combinatorics are developed, especially the theory of Kostka polynomials, the ice square model, the combinatorial theory of classical numbers, a new approach to determinant calculus.

The Andrews Festschrift

The Andrews Festschrift PDF Author: Dominique Foata
Publisher: Springer Science & Business Media
ISBN: 3642565131
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This book contains seventeen contributions made to George Andrews on the occasion of his sixtieth birthday, ranging from classical number theory (the theory of partitions) to classical and algebraic combinatorics. Most of the papers were read at the 42nd session of the Sminaire Lotharingien de Combinatoire that took place at Maratea, Basilicata, in August 1998. This volume contains a long memoir on Ramanujan's Unpublished Manuscript and the Tau functions studied with a contemporary eye, together with several papers dealing with the theory of partitions. There is also a description of a maple package to deal with general q-calculus. More subjects on algebraic combinatorics are developed, especially the theory of Kostka polynomials, the ice square model, the combinatorial theory of classical numbers, a new approach to determinant calculus.

The Power of q

The Power of q PDF Author: Michael D. Hirschhorn
Publisher: Springer
ISBN: 331957762X
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author’s personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises. After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange’s four-squares theorem and Gauss’s two-squares theorem. Attention then turns to partitions and Ramanujan’s partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers–Ramanujan identities and the Rogers–Ramanujan continued fraction, the famous “forty identities” of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a “mysterious” partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper “which even Erdős couldn’t do.” The book concludes with a look at Ramanujan’s remarkable tau function.

Probability and Statistical Physics in St. Petersburg

Probability and Statistical Physics in St. Petersburg PDF Author: V. Sidoravicius
Publisher: American Mathematical Soc.
ISBN: 1470422484
Category : Mathematics
Languages : en
Pages : 482

Get Book Here

Book Description
This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.

Symmetric Functions and Combinatorial Operators on Polynomials

Symmetric Functions and Combinatorial Operators on Polynomials PDF Author: Alain Lascoux
Publisher: American Mathematical Soc.
ISBN: 9780821889435
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
The theory of symmetric functions is an old topic in mathematics which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and itsoccurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independentchapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods or the method of Cauchy. The last chapter sketches a non-commutative version of symmetric functions, using Young tableaux and the plactic monoid. The book contains numerous exercises clarifying and extending many points of the main text. It will make an excellent supplementary text for a graduate course in combinatorics.

Representation Theory, Complex Analysis, and Integral Geometry

Representation Theory, Complex Analysis, and Integral Geometry PDF Author: Bernhard Krötz
Publisher: Springer Science & Business Media
ISBN: 081764816X
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.

Neverending Fractions

Neverending Fractions PDF Author: Jonathan Borwein
Publisher: Cambridge University Press
ISBN: 0521186498
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
This introductory text covers a variety of applications to interest every reader, from researchers to amateur mathematicians.

Series and Products in the Development of Mathematics: Volume 1

Series and Products in the Development of Mathematics: Volume 1 PDF Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108573185
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.

Series and Products in the Development of Mathematics

Series and Products in the Development of Mathematics PDF Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108709451
Category : Mathematics
Languages : en
Pages : 779

Get Book Here

Book Description
First of two volumes tracing the development of series and products. Second edition adds extensive material from original works.

The Legacy of Alladi Ramakrishnan in the Mathematical Sciences

The Legacy of Alladi Ramakrishnan in the Mathematical Sciences PDF Author: Krishnaswami Alladi
Publisher: Springer Science & Business Media
ISBN: 1441962638
Category : Mathematics
Languages : en
Pages : 571

Get Book Here

Book Description
In the spirit of Alladi Ramakrishnan’s profound interest and contributions to three fields of science — Mathematics, Statistics, and Physics — this volume contains invited surveys and research articles from prominent members of these communities who also knew Ramakrishnan personally and greatly respected his influence in these areas of science. Historical photos, telegrams, and biographical narratives of Alladi Ramakrishnan’s illustrious career of special interest are included as well.

Lectures on Random Lozenge Tilings

Lectures on Random Lozenge Tilings PDF Author: Vadim Gorin
Publisher: Cambridge University Press
ISBN: 1108922902
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Over the past 25 years, there has been an explosion of interest in the area of random tilings. The first book devoted to the topic, this timely text describes the mathematical theory of tilings. It starts from the most basic questions (which planar domains are tileable?), before discussing advanced topics about the local structure of very large random tessellations. The author explains each feature of random tilings of large domains, discussing several different points of view and leading on to open problems in the field. The book is based on upper-division courses taught to a variety of students but it also serves as a self-contained introduction to the subject. Test your understanding with the exercises provided and discover connections to a wide variety of research areas in mathematics, theoretical physics, and computer science, such as conformal invariance, determinantal point processes, Gibbs measures, high-dimensional random sampling, symmetric functions, and variational problems.