Author: Stephen E. Fienberg
Publisher: Springer Science & Business Media
ISBN: 0387728244
Category : Mathematics
Languages : en
Pages : 208
Book Description
Until recent years the statistical and computational techniques available for the analysis of cross-classified data were quite limited. This book presents some of the recent work on the statistical analysis of cross-classified data using longlinear models.
The Analysis of Cross-Classified Categorical Data
Author: Stephen E. Fienberg
Publisher: Springer Science & Business Media
ISBN: 0387728244
Category : Mathematics
Languages : en
Pages : 208
Book Description
Until recent years the statistical and computational techniques available for the analysis of cross-classified data were quite limited. This book presents some of the recent work on the statistical analysis of cross-classified data using longlinear models.
Publisher: Springer Science & Business Media
ISBN: 0387728244
Category : Mathematics
Languages : en
Pages : 208
Book Description
Until recent years the statistical and computational techniques available for the analysis of cross-classified data were quite limited. This book presents some of the recent work on the statistical analysis of cross-classified data using longlinear models.
An Introduction to Categorical Data Analysis
Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1119405270
Category : Mathematics
Languages : en
Pages : 393
Book Description
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Publisher: John Wiley & Sons
ISBN: 1119405270
Category : Mathematics
Languages : en
Pages : 393
Book Description
A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
Practical Methods for Design and Analysis of Complex Surveys
Author: Risto Lehtonen
Publisher: John Wiley & Sons
ISBN: 0470091630
Category : Mathematics
Languages : en
Pages : 360
Book Description
Large surveys are becoming increasingly available for public use, and researchers are often faced with the need to analyse complex survey data to address key scientific issues. For proper analysis it is also important to be aware of the different aspects of the design of complex surveys. Practical Methods for Design and Analysis of Complex Surveys features intermediate and advanced statistical techniques for use in designing and analysing complex surveys. This extensively updated edition features much new material, and detailed practical exercises with links to a Web site, helping instructors and enabling use for distance learning. * Provides a comprehensive introduction to sampling and estimation in descriptive surveys, including design effect statistic and use of auxiliary data. * Includes detailed coverage of complex survey analysis, including design-based ANOVA and logistic regression with GEE estimation. * Contains much new material, including handling of non-sampling errors, and model-assisted estimation for domains. * Features detailed real-li fe case studies, such as multilevel modeling in a multinational educational survey. * Supported by a Web site containing software codes, real data sets, computerized exercises with solutions, and online training materials. Practical Methods for Design and Analysis of Complex Surveys provides a useful practical resource for researchers and practitioners working in the planning, implementation or analysis of complex surveys and opinion polls, including business, educational, health, social, and socio-economic surveys and official statistics. In addition, the book is well suited for use on intermediate and advanced courses in survey sampling.
Publisher: John Wiley & Sons
ISBN: 0470091630
Category : Mathematics
Languages : en
Pages : 360
Book Description
Large surveys are becoming increasingly available for public use, and researchers are often faced with the need to analyse complex survey data to address key scientific issues. For proper analysis it is also important to be aware of the different aspects of the design of complex surveys. Practical Methods for Design and Analysis of Complex Surveys features intermediate and advanced statistical techniques for use in designing and analysing complex surveys. This extensively updated edition features much new material, and detailed practical exercises with links to a Web site, helping instructors and enabling use for distance learning. * Provides a comprehensive introduction to sampling and estimation in descriptive surveys, including design effect statistic and use of auxiliary data. * Includes detailed coverage of complex survey analysis, including design-based ANOVA and logistic regression with GEE estimation. * Contains much new material, including handling of non-sampling errors, and model-assisted estimation for domains. * Features detailed real-li fe case studies, such as multilevel modeling in a multinational educational survey. * Supported by a Web site containing software codes, real data sets, computerized exercises with solutions, and online training materials. Practical Methods for Design and Analysis of Complex Surveys provides a useful practical resource for researchers and practitioners working in the planning, implementation or analysis of complex surveys and opinion polls, including business, educational, health, social, and socio-economic surveys and official statistics. In addition, the book is well suited for use on intermediate and advanced courses in survey sampling.
Complex Surveys
Author: Parimal Mukhopadhyay
Publisher: Springer
ISBN: 981100871X
Category : Mathematics
Languages : en
Pages : 259
Book Description
The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters’ behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The observations using these complex designs are not independently and identically distributed – an assumption on which the classical procedures of inference are based. This means that if classical tests are used for the analysis of such data, the inferences obtained will be inconsistent and often invalid. For this reason, many modified test procedures have been developed for this purpose over the last few decades.
Publisher: Springer
ISBN: 981100871X
Category : Mathematics
Languages : en
Pages : 259
Book Description
The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters’ behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The observations using these complex designs are not independently and identically distributed – an assumption on which the classical procedures of inference are based. This means that if classical tests are used for the analysis of such data, the inferences obtained will be inconsistent and often invalid. For this reason, many modified test procedures have been developed for this purpose over the last few decades.
Categorical Data Analysis
Author: Alan Agresti
Publisher: John Wiley & Sons
ISBN: 1118710940
Category : Mathematics
Languages : en
Pages : 756
Book Description
Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Publisher: John Wiley & Sons
ISBN: 1118710940
Category : Mathematics
Languages : en
Pages : 756
Book Description
Praise for the Second Edition "A must-have book for anyone expecting to do research and/or applications in categorical data analysis." —Statistics in Medicine "It is a total delight reading this book." —Pharmaceutical Research "If you do any analysis of categorical data, this is an essential desktop reference." —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control.
Analysis of Survey Data
Author: R. L. Chambers
Publisher: John Wiley & Sons
ISBN: 0470864397
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book is concerned with statistical methods for the analysis of data collected from a survey. A survey could consist of data collected from a questionnaire or from measurements, such as those taken as part of a quality control process. Concerned with the statistical methods for the analysis of sample survey data, this book will update and extend the successful book edited by Skinner, Holt and Smith on 'Analysis of Complex Surveys'. The focus will be on methodological issues, which arise when applying statistical methods to sample survey data and will discuss in detail the impact of complex sampling schemes. Further issues, such as how to deal with missing data and measurement of error will also be critically discussed. There have significant improvements in statistical software which implement complex sampling schemes (eg SUDAAN, STATA, WESVAR, PC CARP ) in the last decade and there is greater need for practical advice for those analysing survey data. To ensure a broad audience, the statistical theory will be made accessible through the use of practical examples. This book will be accessible to a broad audience of statisticians but will primarily be of interest to practitioners analysing survey data. Increased awareness by social scientists of the variety of powerful statistical methods will make this book a useful reference.
Publisher: John Wiley & Sons
ISBN: 0470864397
Category : Mathematics
Languages : en
Pages : 398
Book Description
This book is concerned with statistical methods for the analysis of data collected from a survey. A survey could consist of data collected from a questionnaire or from measurements, such as those taken as part of a quality control process. Concerned with the statistical methods for the analysis of sample survey data, this book will update and extend the successful book edited by Skinner, Holt and Smith on 'Analysis of Complex Surveys'. The focus will be on methodological issues, which arise when applying statistical methods to sample survey data and will discuss in detail the impact of complex sampling schemes. Further issues, such as how to deal with missing data and measurement of error will also be critically discussed. There have significant improvements in statistical software which implement complex sampling schemes (eg SUDAAN, STATA, WESVAR, PC CARP ) in the last decade and there is greater need for practical advice for those analysing survey data. To ensure a broad audience, the statistical theory will be made accessible through the use of practical examples. This book will be accessible to a broad audience of statisticians but will primarily be of interest to practitioners analysing survey data. Increased awareness by social scientists of the variety of powerful statistical methods will make this book a useful reference.
Survey Sampling
Author: Arijit Chaudhuri
Publisher: CRC Press
ISBN: 1420028634
Category : Mathematics
Languages : en
Pages : 416
Book Description
Since publication of the first edition in 1992, the field of survey sampling has grown considerably. This new edition of Survey Sampling: Theory and Methods has been updated to include the latest research and the newest methods. The authors have undertaken the daunting task of surveying the sampling literature of the past decade to provide an outst
Publisher: CRC Press
ISBN: 1420028634
Category : Mathematics
Languages : en
Pages : 416
Book Description
Since publication of the first edition in 1992, the field of survey sampling has grown considerably. This new edition of Survey Sampling: Theory and Methods has been updated to include the latest research and the newest methods. The authors have undertaken the daunting task of surveying the sampling literature of the past decade to provide an outst
Analysis of Complex Surveys
Author: C. J. Skinner
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 334
Book Description
This study discusses appropriate principles and methods for the analysis of surveys, such as stratified multi-stage sampling, as well as the complex structure of the populations upon which these designs are based. It features essays on current research written by international experts.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 334
Book Description
This study discusses appropriate principles and methods for the analysis of surveys, such as stratified multi-stage sampling, as well as the complex structure of the populations upon which these designs are based. It features essays on current research written by international experts.
Applied Survey Data Analysis
Author: Steven G. Heeringa
Publisher: CRC Press
ISBN: 1498761615
Category : Mathematics
Languages : en
Pages : 591
Book Description
Highly recommended by the Journal of Official Statistics, The American Statistician, and other journals, Applied Survey Data Analysis, Second Edition provides an up-to-date overview of state-of-the-art approaches to the analysis of complex sample survey data. Building on the wealth of material on practical approaches to descriptive analysis and regression modeling from the first edition, this second edition expands the topics covered and presents more step-by-step examples of modern approaches to the analysis of survey data using the newest statistical software. Designed for readers working in a wide array of disciplines who use survey data in their work, this book continues to provide a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. An example-driven guide to the applied statistical analysis and interpretation of survey data, the second edition contains many new examples and practical exercises based on recent versions of real-world survey data sets. Although the authors continue to use Stata for most examples in the text, they also continue to offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s updated website.
Publisher: CRC Press
ISBN: 1498761615
Category : Mathematics
Languages : en
Pages : 591
Book Description
Highly recommended by the Journal of Official Statistics, The American Statistician, and other journals, Applied Survey Data Analysis, Second Edition provides an up-to-date overview of state-of-the-art approaches to the analysis of complex sample survey data. Building on the wealth of material on practical approaches to descriptive analysis and regression modeling from the first edition, this second edition expands the topics covered and presents more step-by-step examples of modern approaches to the analysis of survey data using the newest statistical software. Designed for readers working in a wide array of disciplines who use survey data in their work, this book continues to provide a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. An example-driven guide to the applied statistical analysis and interpretation of survey data, the second edition contains many new examples and practical exercises based on recent versions of real-world survey data sets. Although the authors continue to use Stata for most examples in the text, they also continue to offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s updated website.
Sample Surveys: Inference and Analysis
Author:
Publisher: Morgan Kaufmann
ISBN: 0080963544
Category : Mathematics
Languages : en
Pages : 667
Book Description
Handbook of Statistics_29B contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each part preceded by an introduction, summarizing the main developments in the areas covered in that part. Volume 1 deals with methods of sample selection and data processing, with the later including editing and imputation, handling of outliers and measurement errors, and methods of disclosure control. The volume contains also a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses. Volume 2 is concerned with inference, distinguishing between design-based and model-based methods and focusing on specific problems such as small area estimation, analysis of longitudinal data, categorical data analysis and inference on distribution functions. The volume contains also chapters dealing with case-control studies, asymptotic properties of estimators and decision theoretic aspects. - Comprehensive account of recent developments in sample survey theory and practice - Covers a wide variety of diverse applications - Comprehensive bibliography
Publisher: Morgan Kaufmann
ISBN: 0080963544
Category : Mathematics
Languages : en
Pages : 667
Book Description
Handbook of Statistics_29B contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each part preceded by an introduction, summarizing the main developments in the areas covered in that part. Volume 1 deals with methods of sample selection and data processing, with the later including editing and imputation, handling of outliers and measurement errors, and methods of disclosure control. The volume contains also a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses. Volume 2 is concerned with inference, distinguishing between design-based and model-based methods and focusing on specific problems such as small area estimation, analysis of longitudinal data, categorical data analysis and inference on distribution functions. The volume contains also chapters dealing with case-control studies, asymptotic properties of estimators and decision theoretic aspects. - Comprehensive account of recent developments in sample survey theory and practice - Covers a wide variety of diverse applications - Comprehensive bibliography