The Advanced Test Reactor Irradiation Facilities and Capabilities

The Advanced Test Reactor Irradiation Facilities and Capabilities PDF Author: Raymond V. Furstenau
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 16

Get Book Here

Book Description
"The Advanced test Reactor (ATR) is the third generation of test reactors built at the Test Reactor Area (TRA), located in the Idaho National Engineering and Environmental Laboratory (INEEL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. ART has a maximum power of 250MW and can provide maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second. this allows considerable acceleration of accumulated neutron fluence to materials and fuels over what would be seen in a typical power reactor. Since power operation of the ATR began in 1969, numerous testing methods have been developed to take advantage of the capabilities of the ATR. The wide range of experimental facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented sealed capsule containing test specimens with no real-time monitoring and control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The Irradiation Test Vehicle, installed in 1999, is the newest testing apparatus in the ATR that accommodates up to fifteen separate tests, each with its own temperature control and monitoring capabilities as well as neutron spectral tailoring capability. The U.S. Department of Energy intends to maintain and expand the capabilities of the ATR to ensure it remains a viable facility for the Department's materials and fuels testing programs for the foreseeable future." -- Page[1].

The Advanced Test Reactor Irradiation Facilities and Capabilities

The Advanced Test Reactor Irradiation Facilities and Capabilities PDF Author: Raymond V. Furstenau
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 16

Get Book Here

Book Description
"The Advanced test Reactor (ATR) is the third generation of test reactors built at the Test Reactor Area (TRA), located in the Idaho National Engineering and Environmental Laboratory (INEEL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. ART has a maximum power of 250MW and can provide maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second. this allows considerable acceleration of accumulated neutron fluence to materials and fuels over what would be seen in a typical power reactor. Since power operation of the ATR began in 1969, numerous testing methods have been developed to take advantage of the capabilities of the ATR. The wide range of experimental facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented sealed capsule containing test specimens with no real-time monitoring and control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The Irradiation Test Vehicle, installed in 1999, is the newest testing apparatus in the ATR that accommodates up to fifteen separate tests, each with its own temperature control and monitoring capabilities as well as neutron spectral tailoring capability. The U.S. Department of Energy intends to maintain and expand the capabilities of the ATR to ensure it remains a viable facility for the Department's materials and fuels testing programs for the foreseeable future." -- Page[1].

The Advanced Test Reactor Irradiation Facilities and Capabilities

The Advanced Test Reactor Irradiation Facilities and Capabilities PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

Irradiation Facilities at the Advanced Test Reactor

Irradiation Facilities at the Advanced Test Reactor PDF Author: S. Blaine Grover
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho NationalLaboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), whichoperated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containingtest specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR's control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

Capabilities and Facilities Available at the Advanced Test Reactor to Support Development of the Next Generation Reactors

Capabilities and Facilities Available at the Advanced Test Reactor to Support Development of the Next Generation Reactors PDF Author: S. Blaine Grover
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. It is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The Irradiation Test Vehicle (ITV) installed in 1999 enhanced these capabilities by providing a built in experiment monitoring and control system for instrumented and/or temperature controlled experiments. This built in control system significantly reduces the cost for an actively monitored/temperature controlled experiments by providing the thermocouple connections, temperature control system, and temperature control gas supply and exhaust systems already in place at the irradiation position. Although the ITV in-core hardware was removed from the ATR during the last core replacement completed in early 2005, it (or a similar facility) could be re-installed for an irradiation program when the need arises. The proposed Gas Test Loop currently being designed for installation in the ATR will provide additional capability for testing of not only gas reactor materials and fuels but will also include enhanced fast flux rates for testing of materials and fuels for other next generation reactors including preliminary testing for fast reactor fuels and materials. This paper discusses the different irradiation capabilities available and the cost benefit issues related to each capability.

Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks

Advanced Test Reactor -- Testing Capabilities and Plans AND Advanced Test Reactor National Scientific User Facility -- Partnerships and Networks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner "lobes" to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plans for the NSUF.

Engineering Capabilities of In-pile Irradiation Facilities Used by GE-ANPD

Engineering Capabilities of In-pile Irradiation Facilities Used by GE-ANPD PDF Author: R.J. Harry
Publisher:
ISBN:
Category : Materials testing reactors
Languages : en
Pages : 84

Get Book Here

Book Description


Customer Handbook for Obtaining Advanced Test Reactor Irradiation Services

Customer Handbook for Obtaining Advanced Test Reactor Irradiation Services PDF Author: Idaho National Laboratory
Publisher:
ISBN:
Category : Irradiation
Languages : en
Pages : 88

Get Book Here

Book Description
"This handbook explains the design and operation of the ATR [advanced test reactor], the types of irradiation experiments and tests it can perform, its irradiation facilities and hardware (including the ATR Critical facility), and how potential customers can plan for and schedule ATR irradiation positions and experimental test services" -- Page 1.

Advanced Test Reactor National Scientific User Facility Progress

Advanced Test Reactor National Scientific User Facility Progress PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world's premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5? to 5.0? in diameter and are all 48? in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These?extra? specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.