Testing the Predictive Capability of the High-Fidelity Generalized Method of Cells Using an Efficient Reformulation

Testing the Predictive Capability of the High-Fidelity Generalized Method of Cells Using an Efficient Reformulation PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721014637
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.Arnold, Steven M. (Technical Monitor) and Bansal, Yogesh and Pindera, Marek-JerzyGlenn Research CenterMICROMECHANICS; DEFORMATION; COMPOSITE MATERIALS; STRESS DISTRIBUTION; MODULUS OF ELASTICITY; MATHEMATICAL MODELS; SYMMETRY; STRESS-STRAIN RELATIONSHIPS; STIFFNESS MATRIX; PREDICTION ANALYSIS TECHNIQUES; PERFORMANCE TESTS; EFFECTIVENESS

Testing the Predictive Capability of the High-Fidelity Generalized Method of Cells Using an Efficient Reformulation

Testing the Predictive Capability of the High-Fidelity Generalized Method of Cells Using an Efficient Reformulation PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721014637
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.Arnold, Steven M. (Technical Monitor) and Bansal, Yogesh and Pindera, Marek-JerzyGlenn Research CenterMICROMECHANICS; DEFORMATION; COMPOSITE MATERIALS; STRESS DISTRIBUTION; MODULUS OF ELASTICITY; MATHEMATICAL MODELS; SYMMETRY; STRESS-STRAIN RELATIONSHIPS; STIFFNESS MATRIX; PREDICTION ANALYSIS TECHNIQUES; PERFORMANCE TESTS; EFFECTIVENESS

Micromechanics of Composite Materials

Micromechanics of Composite Materials PDF Author: Jacob Aboudi
Publisher: Butterworth-Heinemann
ISBN: 0123970350
Category : Technology & Engineering
Languages : en
Pages : 1032

Get Book Here

Book Description
Summary: A Generalized Multiscale Analysis Approach brings together comprehensive background information on the multiscale nature of the composite, constituent material behaviour, damage models and key techniques for multiscale modelling, as well as presenting the findings and methods, developed over a lifetime's research, of three leading experts in the field. The unified approach presented in the book for conducting multiscale analysis and design of conventional and smart composite materials is also applicable for structures with complete linear and nonlinear material behavior, with numerous applications provided to illustrate use. Modeling composite behaviour is a key challenge in research and industry; when done efficiently and reliably it can save money, decrease time to market with new innovations and prevent component failure.

Progress in Smart Materials and Structures

Progress in Smart Materials and Structures PDF Author: Peter L. Reece
Publisher: Nova Publishers
ISBN: 9781600211065
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
"Smart" materials respond to environmental stimuli with particular changes in some variables. For that reason they are often also called responsive materials. Depending on changes in some external conditions, "smart" materials change either their properties (mechanical, electrical, appearance), their structure or composition, or their functions. Mostly, "smart" materials are embedded in systems whose inherent properties can be favourably changed to meet performance needs. Smart materials and structures have widespread applications in: 1. Materials science: composites, ceramics, processing science, interface science, sensor/actuator materials, chiral materials, conducting and chiral polymers, electrochromic materials, liquid crystals, molecular-level smart materials, biomaterials. 2. Sensing and actuation: electromagnetic, acoustic, chemical and mechanical sensing and actuation, single-measurand sensors, multiplexed multimeasurand distributed sensors and actuators, sensor/actuator signal processing, compatibility of sensors and actuators with conventional and advanced materials, smart sensors for materials and composites processing. 3. Optics and electromagnetics: optical fibre technology, active and adaptive optical systems and components, tuneable high-dielectric phase shifters, tuneable surface control. 4. Structures: smart skins for drag and turbulence control, other applications in aerospace/hydrospace structures, civil infrastructures, transportation vehicles, manufacturing equipment, repairability and maintainability. 5. Control: structural acoustic control, distributed control, analogue and digital feedback control, real-time implementation, adaptive structure stability, damage implications for structural control. 6. Information processing: neural networks, data processing, data visualisation and reliability. This book presents leading research from around the globe in this field.

Comparison of the Computational Efficiency of the Original Versus Reformulated High-Fidelity Generalized Method of Cells

Comparison of the Computational Efficiency of the Original Versus Reformulated High-Fidelity Generalized Method of Cells PDF Author: Steven M. Arnold
Publisher: BiblioGov
ISBN: 9781289266707
Category :
Languages : en
Pages : 30

Get Book Here

Book Description
The High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model has recently been reformulated by Bansal and Pindera (in the context of elastic phases with perfect bonding) to maximize its computational efficiency. This reformulated version of HFGMC has now been extended to include both inelastic phases and imperfect fiber-matrix bonding. The present paper presents an overview of the HFGMC theory in both its original and reformulated forms and a comparison of the results of the two implementations. The objective is to establish the correlation between the two HFGMC formulations and document the improved efficiency offered by the reformulation. The results compare the macro and micro scale predictions of the continuous reinforcement (doubly-periodic) and discontinuous reinforcement (triply-periodic) versions of both formulations into the inelastic regime, and, in the case of the discontinuous reinforcement version, with both perfect and weak interfacial bonding. The results demonstrate that identical predictions are obtained using either the original or reformulated implementations of HFGMC aside from small numerical differences in the inelastic regime due to the different implementation schemes used for the inelastic terms present in the two formulations. Finally, a direct comparison of execution times is presented for the original formulation and reformulation code implementations. It is shown that as the discretization employed in representing the composite repeating unit cell becomes increasingly refined (requiring a larger number of sub-volumes), the reformulated implementation becomes significantly (approximately an order of magnitude at best) more computationally efficient in both the continuous reinforcement (doubly-periodic) and discontinuous reinforcement (triply-periodic) cases.

High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials

High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 56

Get Book Here

Book Description


Ceramic Matrix Composites

Ceramic Matrix Composites PDF Author: Narottam P. Bansal
Publisher: John Wiley & Sons
ISBN: 1118832892
Category : Technology & Engineering
Languages : en
Pages : 725

Get Book Here

Book Description
This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.

Efficient Learning Machines

Efficient Learning Machines PDF Author: Mariette Awad
Publisher: Apress
ISBN: 1430259906
Category : Computers
Languages : en
Pages : 263

Get Book Here

Book Description
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Heterogeneous Media

Heterogeneous Media PDF Author: Konstantin Markov
Publisher: Springer Science & Business Media
ISBN: 9780817640835
Category : Technology & Engineering
Languages : en
Pages : 506

Get Book Here

Book Description
Most materials used in contemporary life and industry are heterogeneous (composites) and multicomponent, possessing a rich and complex internal structure. This internal structure, or microstructure, plays a key role in understanding and controlling the continuum behavior, or macroscopic, of a wide variety of materials. The modeling process is a critical tool for scientists and engineers studying the analysis and experimentation for the micromechanics and behavior of these materials. "Heterogeneous Media" is a critical, in-depth edited survey of the major topics surrounding the modeling and analysis of problems in micromechanics of multicomponent systems, including conceptual and practical aspects. The goal of this extensive and comprehensive survey is to provide both specialists and nonspecialists with an authoritative and interdisciplinary perspective of current ideas and methods used for modeling heterogeneous materials behavior and their applications. Topics and Features: * all chapters use interdisciplinary modeling perspective for investigating heterogeneous media*Five chapters provide self-contained discussions, with background provided*Focuses only upon most important techniques and models, fully exploring micro-macro interconnections*extensive introductory survey chapter on micromechanics of heterogeneous media*microstructure characterization via statistical correlation functions*micro-scale deformation of pore space*wave fields and effective dynamical properties*modeling of the complex production technologies for composite materials The book is ideal for a general scientific and engineering audience needing an in-depth view and guide to current ideas, methods and

Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-heterogeneous Materials

Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-heterogeneous Materials PDF Author: Felix Fritzen
Publisher: KIT Scientific Publishing
ISBN: 3866446993
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book Here

Book Description
Engineering materials show a pronounced heterogeneity on a smaller scale that influences the macroscopic constitutive behavior. Algorithms for the periodic discretization of microstructures are presented. These are used within the Nonuniform Transformation Field Analysis (NTFA) which is an order reduction based nonlinear homogenization method with micro-mechanical background. Theoretical and numerical aspects of the method are discussed and its computational efficiency is validated.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.