Author: Jeffrey Hart
Publisher: Springer Science & Business Media
ISBN: 1475727224
Category : Mathematics
Languages : en
Pages : 298
Book Description
An exploration of the use of smoothing methods in testing the fit of parametric regression models. The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods, addressing both applied and theoretical aspects of the model checking problems. As such, the book is of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas. The first four chapters introduce the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type, and could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.
Nonparametric Smoothing and Lack-of-Fit Tests
Author: Jeffrey Hart
Publisher: Springer Science & Business Media
ISBN: 1475727224
Category : Mathematics
Languages : en
Pages : 298
Book Description
An exploration of the use of smoothing methods in testing the fit of parametric regression models. The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods, addressing both applied and theoretical aspects of the model checking problems. As such, the book is of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas. The first four chapters introduce the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type, and could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.
Publisher: Springer Science & Business Media
ISBN: 1475727224
Category : Mathematics
Languages : en
Pages : 298
Book Description
An exploration of the use of smoothing methods in testing the fit of parametric regression models. The book reviews many of the existing methods for testing lack-of-fit and also proposes a number of new methods, addressing both applied and theoretical aspects of the model checking problems. As such, the book is of interest to practitioners of statistics and researchers investigating either lack-of-fit tests or nonparametric smoothing ideas. The first four chapters introduce the problem of estimating regression functions by nonparametric smoothers, primarily those of kernel and Fourier series type, and could be used as the foundation for a graduate level course on nonparametric function estimation. The prerequisites for a full appreciation of the book are a modest knowledge of calculus and some familiarity with the basics of mathematical statistics.
Smoothing Methods in Statistics
Author: Jeffrey S. Simonoff
Publisher: Springer Science & Business Media
ISBN: 1461240263
Category : Mathematics
Languages : en
Pages : 349
Book Description
Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.
Publisher: Springer Science & Business Media
ISBN: 1461240263
Category : Mathematics
Languages : en
Pages : 349
Book Description
Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.
Nonparametric Regression and Spline Smoothing, Second Edition
Author: Randall L. Eubank
Publisher: CRC Press
ISBN: 9780824793371
Category : Mathematics
Languages : en
Pages : 368
Book Description
Provides a unified account of the most popular approaches to nonparametric regression smoothing. This edition contains discussions of boundary corrections for trigonometric series estimators; detailed asymptotics for polynomial regression; testing goodness-of-fit; estimation in partially linear models; practical aspects, problems and methods for confidence intervals and bands; local polynomial regression; and form and asymptotic properties of linear smoothing splines.
Publisher: CRC Press
ISBN: 9780824793371
Category : Mathematics
Languages : en
Pages : 368
Book Description
Provides a unified account of the most popular approaches to nonparametric regression smoothing. This edition contains discussions of boundary corrections for trigonometric series estimators; detailed asymptotics for polynomial regression; testing goodness-of-fit; estimation in partially linear models; practical aspects, problems and methods for confidence intervals and bands; local polynomial regression; and form and asymptotic properties of linear smoothing splines.
Statistica Sinica
Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 634
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 634
Book Description
Journal of the American Statistical Association
Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 1526
Book Description
A scientific and educational journal not only for professional statisticians but also for economists, business executives, research directors, government officials, university professors, and others who are seriously interested in the application of statistical methods to practical problems, in the development of more useful methods, and in the improvement of basic statistical data.
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 1526
Book Description
A scientific and educational journal not only for professional statisticians but also for economists, business executives, research directors, government officials, university professors, and others who are seriously interested in the application of statistical methods to practical problems, in the development of more useful methods, and in the improvement of basic statistical data.
Nonparametric Regression Methods for Longitudinal Data Analysis
Author: Hulin Wu
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401
Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Publisher: John Wiley & Sons
ISBN: 0470009667
Category : Mathematics
Languages : en
Pages : 401
Book Description
Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Mathematical Methods of Statistics
Author:
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 516
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 516
Book Description
Journal of Statistical Planning and Inference
Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 886
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 886
Book Description
Non-Standard Problems in Inference for Additive and Linear Mixed Models
Author: Sonja Greven
Publisher: Cuvillier Verlag
ISBN: 3867274916
Category : Inference
Languages : en
Pages : 153
Book Description
Publisher: Cuvillier Verlag
ISBN: 3867274916
Category : Inference
Languages : en
Pages : 153
Book Description
Statistical Theory and Method Abstracts
Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 756
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 756
Book Description