Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology

Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology PDF Author: Zhilei Liu Shen
Publisher:
ISBN:
Category : Biomedical materials
Languages : en
Pages : 255

Get Book Here

Book Description
Collagenous tissues (e.g. bone and tendon) have well organized hierarchical structures. To improve understanding of the mechanical behavior of collagenous tissues and to guide the development of multiscale models, mechanical testing at different length scales is required. Whole tissues, fascicles, and fibril bundles have been studied extensively, but little is known at the fibrillar level. Using microelectromechanical systems (MEMS) technology, tensile mechanical testing was performed on type I collagen fibril specimens isolated from the dermis of sea cucumbers. In air uniaxial tensile tests showed that the fibrils had a small strain elastic modulus of 860 ± 450 MPa, a yield stress of 220 ± 140 MPa, and a yield strain of 21% ± 13%. In vitro fracture tests showed that the fibrils had an elastic modulus of 470 ± 410 MPa, a fracture strength of 230 ± 160 MPa, and a fracture strain of 80% ± 44%. The fibrils displayed significantly lower elastic modulus in vitro than in air. Both the fracture strength/strain obtained in vitro and in air were significantly larger than those obtained in vacuo, indicating that the difference arises from the lack of intrafibrillar water molecules produced by vacuum drying. Fracture strength/strain of fibril specimens were different from those reported for collagenous structures of higher hierarchical levels, indicating the importance of obtaining these properties at the fibrillar level for multiscale modeling. In vitro coupled creep and stress relaxation tests demonstrated the intrinsic viscoelastic behavior of collagen fibrils. The stress-strain-time data were fitted using a Kelvin model consisting of a spring and a dashpot in parallel. The fibrils showed an elastic modulus of 180 ± 100 MPa, a viscosity of 4.7 ± 3.2 GPa*sec, and a relaxation time of 29 ± 16 sec. The fibrillar relaxation time was smaller than the tissue-level relaxation time, suggesting tissue relaxation is dominated by non-collagenous components (e.g. proteoglycans). To our knowledge, in vitro fracture and viscoelastic properties of isolated collagen fibrils were measured for the first time. The mechanical properties obtained in this work can be used as input parameters for multiscale modeling and help guide the development of synthetic biomaterials.

Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology

Tensile Mechanical Properties of Isolated Collagen Fibrils Obtained by Microelectromechanical Systems Technology PDF Author: Zhilei Liu Shen
Publisher:
ISBN:
Category : Biomedical materials
Languages : en
Pages : 255

Get Book Here

Book Description
Collagenous tissues (e.g. bone and tendon) have well organized hierarchical structures. To improve understanding of the mechanical behavior of collagenous tissues and to guide the development of multiscale models, mechanical testing at different length scales is required. Whole tissues, fascicles, and fibril bundles have been studied extensively, but little is known at the fibrillar level. Using microelectromechanical systems (MEMS) technology, tensile mechanical testing was performed on type I collagen fibril specimens isolated from the dermis of sea cucumbers. In air uniaxial tensile tests showed that the fibrils had a small strain elastic modulus of 860 ± 450 MPa, a yield stress of 220 ± 140 MPa, and a yield strain of 21% ± 13%. In vitro fracture tests showed that the fibrils had an elastic modulus of 470 ± 410 MPa, a fracture strength of 230 ± 160 MPa, and a fracture strain of 80% ± 44%. The fibrils displayed significantly lower elastic modulus in vitro than in air. Both the fracture strength/strain obtained in vitro and in air were significantly larger than those obtained in vacuo, indicating that the difference arises from the lack of intrafibrillar water molecules produced by vacuum drying. Fracture strength/strain of fibril specimens were different from those reported for collagenous structures of higher hierarchical levels, indicating the importance of obtaining these properties at the fibrillar level for multiscale modeling. In vitro coupled creep and stress relaxation tests demonstrated the intrinsic viscoelastic behavior of collagen fibrils. The stress-strain-time data were fitted using a Kelvin model consisting of a spring and a dashpot in parallel. The fibrils showed an elastic modulus of 180 ± 100 MPa, a viscosity of 4.7 ± 3.2 GPa*sec, and a relaxation time of 29 ± 16 sec. The fibrillar relaxation time was smaller than the tissue-level relaxation time, suggesting tissue relaxation is dominated by non-collagenous components (e.g. proteoglycans). To our knowledge, in vitro fracture and viscoelastic properties of isolated collagen fibrils were measured for the first time. The mechanical properties obtained in this work can be used as input parameters for multiscale modeling and help guide the development of synthetic biomaterials.

Journal of the Royal Society, Interface

Journal of the Royal Society, Interface PDF Author:
Publisher:
ISBN:
Category : Life sciences
Languages : en
Pages : 900

Get Book Here

Book Description


Mechanical Properties of Collagen Fibrils and Elastic Fibers Explored by AFM

Mechanical Properties of Collagen Fibrils and Elastic Fibers Explored by AFM PDF Author: Lanti Yang
Publisher:
ISBN: 9789036526234
Category :
Languages : en
Pages : 152

Get Book Here

Book Description


Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics

Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics PDF Author: Stéphane Avril
Publisher: Springer
ISBN: 3319450719
Category : Technology & Engineering
Languages : en
Pages : 161

Get Book Here

Book Description
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

Extracellular Matrix Assembly and Structure

Extracellular Matrix Assembly and Structure PDF Author: Peter D. Yurchenco
Publisher: Academic Press
ISBN: 1483289427
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
The complex and critical process of extracellular matrix (ECM) assembly is described in this book. Assembly may involve molecules interacting with molecules of the same matrix class, such as in collagen, or interactions between different ECM molecules, such as in basement membranes. The text shows how this is driven by structural information within the matrix monomer. This information will be of interest to cell, developmental, and molecular biologists, biochemists, biophysicists, and biomedical researchers involved in macromolecular assembly, biological macromolecules, and extracellular matrix. Addresses assembly of most of the known classes of extracellular matrix macromolecules Discusses higher order structures produced by ECM Gives important concepts in ECM and cell-matrix interactions, Protein structure and protein-protein interactions, Development and tissue remodeling

Bioinspired Structures and Design

Bioinspired Structures and Design PDF Author: Wole Soboyejo
Publisher: Cambridge University Press
ISBN: 1108963447
Category : Technology & Engineering
Languages : en
Pages : 374

Get Book Here

Book Description
Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Mechanical Behavior of Materials

Mechanical Behavior of Materials PDF Author: Marc A. Meyers
Publisher:
ISBN: 9780511573422
Category : Strength of materials
Languages : en
Pages : 856

Get Book Here

Book Description
Includes numerous examples and problems for student practice, this textbook is ideal for courses on the mechanical behaviour of materials taught in departments of mechanical engineering and materials science.

Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting PDF Author: Alper Erturk
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377

Get Book Here

Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Comprehensive Biomaterials

Comprehensive Biomaterials PDF Author: Paul Ducheyne
Publisher: Elsevier
ISBN: 0080552943
Category : Technology & Engineering
Languages : en
Pages : 3659

Get Book Here

Book Description
Comprehensive Biomaterials brings together the myriad facets of biomaterials into one, major series of six edited volumes that would cover the field of biomaterials in a major, extensive fashion: Volume 1: Metallic, Ceramic and Polymeric Biomaterials Volume 2: Biologically Inspired and Biomolecular Materials Volume 3: Methods of Analysis Volume 4: Biocompatibility, Surface Engineering, and Delivery Of Drugs, Genes and Other Molecules Volume 5: Tissue and Organ Engineering Volume 6: Biomaterials and Clinical Use Experts from around the world in hundreds of related biomaterials areas have contributed to this publication, resulting in a continuum of rich information appropriate for many audiences. The work addresses the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, and strategic insights for those entering and operational in diverse biomaterials applications, research and development, regulatory management, and commercial aspects. From the outset, the goal was to review materials in the context of medical devices and tissue properties, biocompatibility and surface analysis, tissue engineering and controlled release. It was also the intent both, to focus on material properties from the perspectives of therapeutic and diagnostic use, and to address questions relevant to state-of-the-art research endeavors. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance as well as future prospects Presents appropriate analytical methods and testing procedures in addition to potential device applications Provides strategic insights for those working on diverse application areas such as R&D, regulatory management, and commercial development

Electrospun Nanofibers

Electrospun Nanofibers PDF Author: Mehdi Afshari
Publisher: Woodhead Publishing
ISBN: 0081009119
Category : Technology & Engineering
Languages : en
Pages : 650

Get Book Here

Book Description
Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science