Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 460
Book Description
Ten Place Tables of the Jacobian Elliptic Functions
Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 460
Book Description
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 460
Book Description
Ten Place Tables of the Jacobian Elliptic Functions: ARL71-0081
Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 496
Book Description
Ten Place Tables of the Jacobian Elliptic Functions: Arguments at rational functions of the quarter period. ARL72-0019
Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 416
Book Description
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 416
Book Description
Ten Place Tables of the Jacobian Elliptic Functions
Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 408
Book Description
The report contains ten place tables of the Jacobian elliptic functions am(u, k), sn(u, k), cn(u, k), dn(u, k) where u = mk/n, for K squared = 0(.01).99, m = 0(1)(n-1), n = 11(1)20. This tabulation was suggested by Dr. Irving L. Weiner of Multimetrics as an aid in the design and analysis of ultrasharp elliptic filters.
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 408
Book Description
The report contains ten place tables of the Jacobian elliptic functions am(u, k), sn(u, k), cn(u, k), dn(u, k) where u = mk/n, for K squared = 0(.01).99, m = 0(1)(n-1), n = 11(1)20. This tabulation was suggested by Dr. Irving L. Weiner of Multimetrics as an aid in the design and analysis of ultrasharp elliptic filters.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 804
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 804
Book Description
Government Reports Announcements
Author:
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 1366
Book Description
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 1366
Book Description
Government Reports Announcements & Index
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 200
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 200
Book Description
Classed Subject Catalog
Author: Engineering Societies Library
Publisher:
ISBN:
Category : Classified catalogs (Universal decimal)
Languages : en
Pages : 618
Book Description
Publisher:
ISBN:
Category : Classified catalogs (Universal decimal)
Languages : en
Pages : 618
Book Description
Government Reports Index
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 790
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 790
Book Description
Ten Place Tables of the Jacobian Elliptic Functions
Author: Henry E. Fettis
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 456
Book Description
The report contains ten place tables of the Jacobian elliptic functions am(u, k) sn(n, k) cn(u, k) dn(u, k), E(am(u, k)) where u = the integral from zero to phi of (d(theta)/the square root of (1-(k squared)(sin squared theta))); am(u, k) = phi; sn(u, k) = sin phi; cn(u, k) = cos phi; dn(u, k) = the square root of (1 - (k squared)(sin squared phi)); E(phi, k) = the integral from zero to phi of the square root of (1 - (k squared)(sin squared theta))d(theta) for k squared = .950 (.001).999, u = 0(.01)K(k) where K(k) = the integral from zero to pi/2 of (d(theta)/the square root of (1 - (k squared)(sin squared theta))).
Publisher:
ISBN:
Category : Elliptic functions
Languages : en
Pages : 456
Book Description
The report contains ten place tables of the Jacobian elliptic functions am(u, k) sn(n, k) cn(u, k) dn(u, k), E(am(u, k)) where u = the integral from zero to phi of (d(theta)/the square root of (1-(k squared)(sin squared theta))); am(u, k) = phi; sn(u, k) = sin phi; cn(u, k) = cos phi; dn(u, k) = the square root of (1 - (k squared)(sin squared phi)); E(phi, k) = the integral from zero to phi of the square root of (1 - (k squared)(sin squared theta))d(theta) for k squared = .950 (.001).999, u = 0(.01)K(k) where K(k) = the integral from zero to pi/2 of (d(theta)/the square root of (1 - (k squared)(sin squared theta))).