Author: Despina A. Stylianou
Publisher: Routledge
ISBN: 1135856745
Category : Education
Languages : en
Pages : 515
Book Description
A Co-Publication of Routledge for the National Council of Teachers of Mathematics (NCTM) In recent years there has been increased interest in the nature and role of proof in mathematics education; with many mathematics educators advocating that proof should be a central part of the mathematics education of students at all grade levels. This important new collection provides that much-needed forum for mathematics educators to articulate a connected K-16 "story" of proof. Such a story includes understanding how the forms of proof, including the nature of argumentation and justification as well as what counts as proof, evolve chronologically and cognitively and how curricula and instruction can support the development of students’ understanding of proof. Collectively these essays inform educators and researchers at different grade levels about the teaching and learning of proof at each level and, thus, help advance the design of further empirical and theoretical work in this area. By building and extending on existing research and by allowing a variety of voices from the field to be heard, Teaching and Learning Proof Across the Grades not only highlights the main ideas that have recently emerged on proof research, but also defines an agenda for future study.
Teaching and Learning Proof Across the Grades
Strengths-Based Teaching and Learning in Mathematics
Author: Beth McCord Kobett
Publisher: Corwin Press
ISBN: 1544374925
Category : Education
Languages : en
Pages : 189
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Publisher: Corwin Press
ISBN: 1544374925
Category : Education
Languages : en
Pages : 189
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Developing Essential Understanding of Proof and Proving for Teaching Mathematics in Grades 9-12
Author: Amy B. Ellis
Publisher: National
ISBN:
Category : Education
Languages : en
Pages : 126
Book Description
Focuses on essential knowledge for teachers about proof and the process of proving. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to proof and the activities involved in proving, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students...and teachers.
Publisher: National
ISBN:
Category : Education
Languages : en
Pages : 126
Book Description
Focuses on essential knowledge for teachers about proof and the process of proving. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to proof and the activities involved in proving, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students...and teachers.
Proof in Mathematics Education
Author: David A. Reid
Publisher: BRILL
ISBN: 946091246X
Category : Education
Languages : en
Pages : 265
Book Description
Research on teaching and learning proof and proving has expanded in recent decades. This reflects the growth of mathematics education research in general, but also an increased emphasis on proof in mathematics education.
Publisher: BRILL
ISBN: 946091246X
Category : Education
Languages : en
Pages : 265
Book Description
Research on teaching and learning proof and proving has expanded in recent decades. This reflects the growth of mathematics education research in general, but also an increased emphasis on proof in mathematics education.
Proof and Proving in Mathematics Education
Author: Gila Hanna
Publisher: Springer Science & Business Media
ISBN: 9400721293
Category : Education
Languages : en
Pages : 468
Book Description
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. This book, resulting from the 19th ICMI Study, brings together a variety of viewpoints on issues such as: The potential role of reasoning and proof in deepening mathematical understanding in the classroom as it does in mathematical practice. The developmental nature of mathematical reasoning and proof in teaching and learning from the earliest grades. The development of suitable curriculum materials and teacher education programs to support the teaching of proof and proving. The book considers proof and proving as complex but foundational in mathematics. Through the systematic examination of recent research this volume offers new ideas aimed at enhancing the place of proof and proving in our classrooms.
Publisher: Springer Science & Business Media
ISBN: 9400721293
Category : Education
Languages : en
Pages : 468
Book Description
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. This book, resulting from the 19th ICMI Study, brings together a variety of viewpoints on issues such as: The potential role of reasoning and proof in deepening mathematical understanding in the classroom as it does in mathematical practice. The developmental nature of mathematical reasoning and proof in teaching and learning from the earliest grades. The development of suitable curriculum materials and teacher education programs to support the teaching of proof and proving. The book considers proof and proving as complex but foundational in mathematics. Through the systematic examination of recent research this volume offers new ideas aimed at enhancing the place of proof and proving in our classrooms.
Introduction to Reasoning and Proof
Author: Karren Schultz-Ferrell
Publisher: Math Process Standards
ISBN: 9780325010335
Category : Education
Languages : en
Pages : 0
Book Description
NCTM's Process Standards were designed to support teaching that helps children develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every elementary teacher the opportunity to explore each one of the standards in depth. And with language and examples that don't require prior math training to understand, the series offers friendly, reassuring advice to any teacher preparing to embrace the Process Standards. In Introduction to Reasoning and Proof, Karren Shultz-Ferrell, Brenda Hammond, and Josepha Roblesfamiliarize you with ways to help students explore their reasoning and support their mathematical thinking. They offer an array of entry points for understanding, planning, and teaching, including strategies that help students develop strong mathematical reasoning and construct solid justifications for their thinking. Full of activities that are modifiable for immediate use with students of all levels and written by veteran teachers for teachers of every level of experience, Introduction to Reasoning and Proof highlights the importance of encouraging children to describe their reasoning about mathematical activities, while also recommending ways to question students about their conclusions and their thought processes in ways that help support classroom-wide learning. Best of all, like all the titles in the Math Process Standards Series, Introduction to Reasoning and Proof comes with two powerful tools to help you get started and plan well: a CD-ROM with activities customizable to match your lessons and a correlation guide that helps you match mathematical content with the processes it utilizes. If your students could benefit from more opportunities to explain their reasoning about math concepts. Or if you're simply looking for new ways to work the reasoning and proof standards into your curriculum, read, dog-ear, and teach with Introduction to Reasoning and Proof. And if you'd like to learn about any of NCTM's process standards, or if you're looking for new, classroom-tested ways to address them in your math teaching, look no further than Heinemann's Math Process Standards Series. You'll find them explained in the most understandable and practical way: from one teacher to another.
Publisher: Math Process Standards
ISBN: 9780325010335
Category : Education
Languages : en
Pages : 0
Book Description
NCTM's Process Standards were designed to support teaching that helps children develop independent, effective mathematical thinking. The books in the Heinemann Math Process Standards Series give every elementary teacher the opportunity to explore each one of the standards in depth. And with language and examples that don't require prior math training to understand, the series offers friendly, reassuring advice to any teacher preparing to embrace the Process Standards. In Introduction to Reasoning and Proof, Karren Shultz-Ferrell, Brenda Hammond, and Josepha Roblesfamiliarize you with ways to help students explore their reasoning and support their mathematical thinking. They offer an array of entry points for understanding, planning, and teaching, including strategies that help students develop strong mathematical reasoning and construct solid justifications for their thinking. Full of activities that are modifiable for immediate use with students of all levels and written by veteran teachers for teachers of every level of experience, Introduction to Reasoning and Proof highlights the importance of encouraging children to describe their reasoning about mathematical activities, while also recommending ways to question students about their conclusions and their thought processes in ways that help support classroom-wide learning. Best of all, like all the titles in the Math Process Standards Series, Introduction to Reasoning and Proof comes with two powerful tools to help you get started and plan well: a CD-ROM with activities customizable to match your lessons and a correlation guide that helps you match mathematical content with the processes it utilizes. If your students could benefit from more opportunities to explain their reasoning about math concepts. Or if you're simply looking for new ways to work the reasoning and proof standards into your curriculum, read, dog-ear, and teach with Introduction to Reasoning and Proof. And if you'd like to learn about any of NCTM's process standards, or if you're looking for new, classroom-tested ways to address them in your math teaching, look no further than Heinemann's Math Process Standards Series. You'll find them explained in the most understandable and practical way: from one teacher to another.
Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds
Author: Carolyn Kieran
Publisher: Springer
ISBN: 3319683519
Category : Education
Languages : en
Pages : 443
Book Description
This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.
Publisher: Springer
ISBN: 3319683519
Category : Education
Languages : en
Pages : 443
Book Description
This book highlights new developments in the teaching and learning of algebraic thinking with 5- to 12-year-olds. Based on empirical findings gathered in several countries on five continents, it provides a wealth of best practices for teaching early algebra. Building on the work of the ICME-13 (International Congress on Mathematical Education) Topic Study Group 10 on Early Algebra, well-known authors such as Luis Radford, John Mason, Maria Blanton, Deborah Schifter, and Max Stephens, as well as younger scholars from Asia, Europe, South Africa, the Americas, Australia and New Zealand, present novel theoretical perspectives and their latest findings. The book is divided into three parts that focus on (i) epistemological/mathematical aspects of algebraic thinking, (ii) learning, and (iii) teaching and teacher development. Some of the main threads running through the book are the various ways in which structures can express themselves in children’s developing algebraic thinking, the roles of generalization and natural language, and the emergence of symbolism. Presenting vital new data from international contexts, the book provides additional support for the position that essential ways of thinking algebraically need to be intentionally fostered in instruction from the earliest grades.
Proving in the Elementary Mathematics Classroom
Author: Andreas J. Stylianides
Publisher: Oxford University Press
ISBN: 0191034738
Category : Mathematics
Languages : en
Pages : 256
Book Description
Although proving is core to mathematics as a sense-making activity, it currently has a marginal place in elementary classrooms internationally. Blending research with practical perspectives, this book addresses what it would take to elevate the place of proving at elementary school. The book uses classroom episodes from two countries to examine different kinds of proving tasks and the proving activity they can generate in the elementary classroom. It examines further the role of teachers in mediating the relationship between proving tasks and proving activity, including major mathematical and pedagogical issues that arise for teachers as they implement each kind of proving task. In addition to its contribution to research knowledge, the book has important implications for teaching, curricular resources, and teacher education.
Publisher: Oxford University Press
ISBN: 0191034738
Category : Mathematics
Languages : en
Pages : 256
Book Description
Although proving is core to mathematics as a sense-making activity, it currently has a marginal place in elementary classrooms internationally. Blending research with practical perspectives, this book addresses what it would take to elevate the place of proving at elementary school. The book uses classroom episodes from two countries to examine different kinds of proving tasks and the proving activity they can generate in the elementary classroom. It examines further the role of teachers in mediating the relationship between proving tasks and proving activity, including major mathematical and pedagogical issues that arise for teachers as they implement each kind of proving task. In addition to its contribution to research knowledge, the book has important implications for teaching, curricular resources, and teacher education.
Conceptions and Consequences of Mathematical Argumentation, Justification, and Proof
Author: Kristen N. Bieda
Publisher: Springer Nature
ISBN: 3030800083
Category : Education
Languages : en
Pages : 331
Book Description
This book aims to advance ongoing debates in the field of mathematics and mathematics education regarding conceptions of argumentation, justification, and proof and the consequences for research and practice when applying particular conceptions of each construct. Through analyses of classroom practice across grade levels using different lenses - particular conceptions of argumentation, justification, and proof - researchers consider the implications of how each conception shapes empirical outcomes. In each section, organized by grade band, authors adopt particular conceptions of argumentation, justification, and proof, and they analyse one data set from each perspective. In addition, each section includes a synthesis chapter from an expert in the field to bring to the fore potential implications, as well as new questions, raised by the analyses. Finally, a culminating section considers the use of each conception across grade bands and data sets.
Publisher: Springer Nature
ISBN: 3030800083
Category : Education
Languages : en
Pages : 331
Book Description
This book aims to advance ongoing debates in the field of mathematics and mathematics education regarding conceptions of argumentation, justification, and proof and the consequences for research and practice when applying particular conceptions of each construct. Through analyses of classroom practice across grade levels using different lenses - particular conceptions of argumentation, justification, and proof - researchers consider the implications of how each conception shapes empirical outcomes. In each section, organized by grade band, authors adopt particular conceptions of argumentation, justification, and proof, and they analyse one data set from each perspective. In addition, each section includes a synthesis chapter from an expert in the field to bring to the fore potential implications, as well as new questions, raised by the analyses. Finally, a culminating section considers the use of each conception across grade bands and data sets.
International Perspectives on the Teaching and Learning of Geometry in Secondary Schools
Author: Patricio Herbst
Publisher: Springer
ISBN: 331977476X
Category : Education
Languages : en
Pages : 383
Book Description
This book presents current perspectives on theoretical and empirical issues related to the teaching and learning of geometry at secondary schools. It contains chapters contributing to three main areas. A first set of chapters examines mathematical, epistemological, and curricular perspectives. A second set of chapters presents studies on geometry instruction and teacher knowledge, and a third set of chapters offers studies on geometry thinking and learning. Specific research topics addressed also include teaching practice, learning trajectories, learning difficulties, technological resources, instructional design, assessments, textbook analyses, and teacher education in geometry. Geometry remains an essential and critical topic in school mathematics. As they learn geometry, students develop essential mathematical thinking and visualization skills and learn a language that helps them relate to and interact with the physical world. Geometry has traditionally been included as a subject of study in secondary mathematics curricula, but it has also featured as a resource in out-of-school problem solving, and has been connected to various human activities such as sports, games, and artwork. Furthermore, geometry often plays a role in teacher preparation, undergraduate mathematics, and at the workplace. New technologies, including dynamic geometry software, computer-assisted design software, and geometric positioning systems, have provided more resources for teachers to design environments and tasks in which students can learn and use geometry. In this context, research on the teaching and learning of geometry will continue to be a key element on the research agendas of mathematics educators, as researchers continue to look for ways to enhance student learning and to understand student thinking and teachers’ decision making.
Publisher: Springer
ISBN: 331977476X
Category : Education
Languages : en
Pages : 383
Book Description
This book presents current perspectives on theoretical and empirical issues related to the teaching and learning of geometry at secondary schools. It contains chapters contributing to three main areas. A first set of chapters examines mathematical, epistemological, and curricular perspectives. A second set of chapters presents studies on geometry instruction and teacher knowledge, and a third set of chapters offers studies on geometry thinking and learning. Specific research topics addressed also include teaching practice, learning trajectories, learning difficulties, technological resources, instructional design, assessments, textbook analyses, and teacher education in geometry. Geometry remains an essential and critical topic in school mathematics. As they learn geometry, students develop essential mathematical thinking and visualization skills and learn a language that helps them relate to and interact with the physical world. Geometry has traditionally been included as a subject of study in secondary mathematics curricula, but it has also featured as a resource in out-of-school problem solving, and has been connected to various human activities such as sports, games, and artwork. Furthermore, geometry often plays a role in teacher preparation, undergraduate mathematics, and at the workplace. New technologies, including dynamic geometry software, computer-assisted design software, and geometric positioning systems, have provided more resources for teachers to design environments and tasks in which students can learn and use geometry. In this context, research on the teaching and learning of geometry will continue to be a key element on the research agendas of mathematics educators, as researchers continue to look for ways to enhance student learning and to understand student thinking and teachers’ decision making.