Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 1556080085
Category : Mathematics
Languages : en
Pages : 556
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 1556080085
Category : Mathematics
Languages : en
Pages : 556
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Publisher: Springer Science & Business Media
ISBN: 1556080085
Category : Mathematics
Languages : en
Pages : 556
Book Description
This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fme subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
Tauberian Theory
Author: Jacob Korevaar
Publisher: Springer Science & Business Media
ISBN: 3662102250
Category : Mathematics
Languages : en
Pages : 497
Book Description
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation", which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
Publisher: Springer Science & Business Media
ISBN: 3662102250
Category : Mathematics
Languages : en
Pages : 497
Book Description
Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation", which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.
Regular Variation
Author: N. H. Bingham
Publisher: Cambridge University Press
ISBN: 9780521379434
Category : Mathematics
Languages : en
Pages : 518
Book Description
A comprehensive account of the theory and applications of regular variation.
Publisher: Cambridge University Press
ISBN: 9780521379434
Category : Mathematics
Languages : en
Pages : 518
Book Description
A comprehensive account of the theory and applications of regular variation.
Spectral Synthesis
Author:
Publisher: Academic Press
ISBN: 0080873820
Category : Mathematics
Languages : en
Pages : 284
Book Description
Spectral Synthesis
Publisher: Academic Press
ISBN: 0080873820
Category : Mathematics
Languages : en
Pages : 284
Book Description
Spectral Synthesis
A Tauberian Theorem
Author: F. J. Bureau
Publisher:
ISBN:
Category : Tauberian theorems
Languages : en
Pages : 78
Book Description
Publisher:
ISBN:
Category : Tauberian theorems
Languages : en
Pages : 78
Book Description
Excursions in Multiplicative Number Theory
Author: Olivier Ramaré
Publisher: Springer Nature
ISBN: 3030731693
Category : Mathematics
Languages : en
Pages : 342
Book Description
This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors. Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided “walks” invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Faĭnleĭb theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at “higher ground”, where they will find opportunities for extensions and applications, such as the Selberg formula, Brun’s sieve, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage. Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area.
Publisher: Springer Nature
ISBN: 3030731693
Category : Mathematics
Languages : en
Pages : 342
Book Description
This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors. Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided “walks” invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Faĭnleĭb theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at “higher ground”, where they will find opportunities for extensions and applications, such as the Selberg formula, Brun’s sieve, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage. Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area.
Proceedings of the Estonian Academy of Sciences, Physics and Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description
Proceedings of the Estonian Academy of Sciences, Physics and Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 72
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 72
Book Description
Multiplicative Number Theory I
Author: Hugh L. Montgomery
Publisher: Cambridge University Press
ISBN: 9780521849036
Category : Mathematics
Languages : en
Pages : 574
Book Description
A 2006 text based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State.
Publisher: Cambridge University Press
ISBN: 9780521849036
Category : Mathematics
Languages : en
Pages : 574
Book Description
A 2006 text based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State.
Proceedings of the Estonian Academy of Sciences, Physics and Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 64
Book Description