Regiones corporis, Osteologia, Myologia (Regionen, Knochen, Bänder, Gelenke und Muskeln des menschlichen Körpers).

Regiones corporis, Osteologia, Myologia (Regionen, Knochen, Bänder, Gelenke und Muskeln des menschlichen Körpers). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 321

Get Book Here

Book Description


Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O2 to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H2O to form H2 and CO2. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N2 from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

Systems Analyses of Advanced Brayton Cycles

Systems Analyses of Advanced Brayton Cycles PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO2). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO2 capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H2 is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

Combined Cycle Systems for Near-Zero Emission Power Generation

Combined Cycle Systems for Near-Zero Emission Power Generation PDF Author: Ashok D Rao
Publisher: Elsevier
ISBN: 0857096184
Category : Technology & Engineering
Languages : en
Pages : 357

Get Book Here

Book Description
Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants. After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems. With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems

Advanced Power Generation Systems

Advanced Power Generation Systems PDF Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0123838614
Category : Technology & Engineering
Languages : en
Pages : 657

Get Book Here

Book Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Advanced Power Plant Materials, Design and Technology

Advanced Power Plant Materials, Design and Technology PDF Author: Dermot Roddy
Publisher: Elsevier
ISBN: 1845699467
Category : Technology & Engineering
Languages : en
Pages : 447

Get Book Here

Book Description
Fossil-fuel power plants account for the majority of worldwide power generation. Increasing global energy demands, coupled with issues of ageing and inefficient power plants, have led to new power plant construction programmes. As cheaper fossil fuel resources are exhausted and emissions criteria are tightened, utilities are turning to power plants designed with performance in mind to satisfy requirements for improved capacity, efficiency, and environmental characteristics. Advanced power plant materials, design and technology provides a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Part one critically reviews advanced power plant designs which target both higher efficiency and flexible operation, including reviews of combined cycle technology and materials performance issues. Part two reviews major plant components for improved operation, including advanced membrane technology for both hydrogen (H2) and carbon dioxide (CO2) separation, as well as flue gas handling technologies for improved emissions control of sulphur oxides (SOx), nitrogen oxides (NOx), mercury, ash and particulates. The section concludes with coverage of high-temperature sensors, and monitoring and control technology that are essential to power plant operation and performance optimisation. Part three begins with coverage of low-rank coal upgrading and biomass resource utilisation for improved power plant fuel flexibility. Routes to improve the environmental impact are also reviewed, with chapters detailing the integration of underground coal gasification and the application of carbon dioxide (CO2) capture and storage. Finally, improved generation performance is reviewed with coverage of syngas and hydrogen (H2) production from fossil-fuel feedstocks. With its distinguished international team of contributors, Advanced power plant materials, design and technology is a standard reference for all power plant engineers and operators, as well as to academics and researchers in this field. Provides a comprehensive reference on the state-of-the-art gas-fired and coal-fired power plants, their major components and performance improvement options Examines major plant components for improved operation as well as flue gas handling technologies for improved emissions control Routes to improve environmental impact are discussed with chapters detailing the integration of underground coal gasification

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles PDF Author: Klaus Brun
Publisher: Woodhead Publishing
ISBN: 0081008058
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. Represents the first book to focus exclusively on SC02 power cycles Contains detailed coverage of cycle fundamentals, key components, and design challenges Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion

Advanced Power Generation Systems

Advanced Power Generation Systems PDF Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1000798895
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
Advanced Power Generation Systems: Thermal Sources evaluates advances made in heat-to-power technologies for conventional combustion heat and nuclear heat, along with natural sources of geothermal, solar, and waste heat generated from the use of different sources. These advances will render the landscape of power generation significantly different in just a few decades. This book covers the commercial viability of advanced technologies and identifies where more work needs to be done. Since power is the future of energy, these technologies will remain sustainable over a long period of time. Key Features Covers power generation and heat engines Details photovoltaics, thermo-photovoltaics, and thermoelectricity Includes discussion of nuclear and renewable energy as well as waste heat This book will be useful for advanced students, researchers, and professionals interested in power generation and energy industries.

Sustainable Energy Conversion for Electricity and Coproducts

Sustainable Energy Conversion for Electricity and Coproducts PDF Author: Ashok Rao
Publisher: John Wiley & Sons
ISBN: 1119064554
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
Sustainable Energy Conversion for Electricity and Coproducts Comprehensive and a fundamental approach to the study of sustainable fuel conversion for the generation of electricity and for coproducing synthetic fuels and chemicals Both electricity and chemicals are critical to maintain our modern way of life; however, environmental impacts have to be factored in to sustain this type of lifestyle. Sustainable Energy Conversion for Electricity and Coproducts provides a unified, comprehensive, and a fundamental approach to the study of sustainable fuel conversion in order to generate electricity and optionally coproduce synthetic fuels and chemicals. The book starts with an introduction to energy systems and describes the various forms of energy sources: natural gas, petroleum, coal, biomass, and other renewables and nuclear. Their distribution is discussed in order to emphasize the uneven availability and finiteness of some of these resources. Each topic in the book is covered in sufficient detail from a theoretical and practical applications standpoint essential for engineers involved in the development of the modern power plant. Sustainable Energy Conversion for Electricity and Coproducts features the following: Discusses the impact of energy sources on the environment along with an introduction to the supply chain and life cycle analyses in order to emphasize the holistic approach required for sustainability. Not only are the emissions of criteria pollutants addressed but also the major greenhouse gas CO2 which is essential for the overall sustainability. Deals with underlying principles and their application to engineering including thermodynamics, fluid flow, and heat and mass transfer which form the foundation for the more technology specific chapters that follow. Details specific subjects within energy plants such as prime movers, systems engineering, Rankine cycle and the Brayton–Rankine combined cycle, and emerging technologies such as high-temperature membranes and fuel cells. Sustainable energy conversion is an extremely active field of research at this time. By covering the multidisciplinary fundamentals in sufficient depth, this book is largely self-contained suitable for the different engineering disciplines, as well as chemists working in this field of sustainable energy conversion.

Compact Heat Exchangers

Compact Heat Exchangers PDF Author: J.E. Hesselgreaves
Publisher: Elsevier
ISBN: 0080529542
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
This book presents the ideas and industrial concepts in compact heat exchanger technology that have been developed in the last 10 years or so. Historically, the development and application of compact heat exchangers and their surfaces has taken place in a piecemeal fashion in a number of rather unrelated areas, principally those of the automotive and prime mover, aerospace, cryogenic and refrigeration sectors. Much detailed technology, familiar in one sector, progressed only slowly over the boundary into another sector. This compartmentalisation was a feature both of the user industries themselves, and also of the supplier, or manufacturing industries. These barriers are now breaking down, with valuable cross-fertilisation taking place. One of the industrial sectors that is waking up to the challenges of compact heat exchangers is that broadly defined as the process sector. If there is a bias in the book, it is towards this sector. Here, in many cases, the technical challenges are severe, since high pressures and temperatures are often involved, and working fluids can be corrosive, reactive or toxic. The opportunities, however, are correspondingly high, since compacts can offer a combination of lower capital or installed cost, lower temperature differences (and hence running costs), and lower inventory. In some cases they give the opportunity for a radical re-think of the process design, by the introduction of process intensification (PI) concepts such as combining process elements in one unit. An example of this is reaction and heat exchange, which offers, among other advantages, significantly lower by-product production.To stimulate future research, the author includes coverage of hitherto neglected approaches, such as that of the Second Law (of Thermodynamics), pioneered by Bejan and co- workers. The justification for this is that there is increasing interest in life-cycle and sustainable approaches to industrial activity as a whole, often involving exergy (Second Law) analysis. Heat exchangers, being fundamental components of energy and process systems, are both savers and spenders of exergy, according to interpretation.