Synthesis and Characterization of Zinc Oxide Based Nanostructures and Composites for Energy Related Applications

Synthesis and Characterization of Zinc Oxide Based Nanostructures and Composites for Energy Related Applications PDF Author: Ahmed Salah Mahdi Al-Asadi
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 214

Get Book Here

Book Description
The main objective of this communication is to report the synthesis and characterization of zinc oxide (ZnO) based nanostructures and composites for energy related applications using a simple and cost-effective chemical bath deposition (CBD) technique. Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through CBD method using a simple seeding technique. This seeding process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ~45 nm and lengths of 1–1.3 μm, with an optical band gap of ~3.61 eV. The NWs growth was successfully achieved on various substrates (e.g silicon dioxide, plastic sheets, copper grid, and carbon nanotube buckypaper). The as-prepared ZnO NWs were found to be photoactive under ultra violet (UV) illumination. UV photosensor devices fabricated using these NW assemblies demonstrated a high photodetection abilities at room temperature under moderate UV illumination power of ~ 250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the same seeding method, for various opto-electronic applications. The same seeding technique was also used to grow ZnO NWs onto aligned multi-wall carbon nanotubes (MWCNTs), which were synthesized by using air assisted chemical vapor deposition (CVD) onto a SiO2/Si substrate. This ZnO NW/MWCNT hybrid structure was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The fabricated structure was used as an electrode for supercapacitor (SC) measurements. Good electrochemical performance was accomplished with a specific capacitance of ~192 F/g along with a maximum energy density of ~3.8Wh/kg and a high power density of ~ 28 kW/kg. The fabricated device showed high stability and it retained over 99% of its initial specific capacitance value after 2000 cycles. In addition, we report on the synthesis & electrochemical characterization of two-dimensional Zinc-Aluminum (ZnAl) layered double hydroxides (LDHs) directly grown on Al substrate by using CBD method. After details structural characterization by SEM, Raman spectroscopy, EDS elemental mapping, and X-ray powder diffraction (XRD), the electrochemical performances of an electrode fabricated based on this material were evaluated via cyclic voltammetry and galvanostatic charge-discharge using various electrolytes. The ionic electrolyte device showed a maximum specific capacitance of 120 F/g along with a maximum energy density of 5.17 Wh/Kg and a high power density of 8.4 kW/h. Additionally, we found that a high specific capacitance value of 358 F/g was achieved using an aqueous electrolyte.

Synthesis and Characterization of Zinc Oxide Based Nanostructures and Composites for Energy Related Applications

Synthesis and Characterization of Zinc Oxide Based Nanostructures and Composites for Energy Related Applications PDF Author: Ahmed Salah Mahdi Al-Asadi
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 214

Get Book Here

Book Description
The main objective of this communication is to report the synthesis and characterization of zinc oxide (ZnO) based nanostructures and composites for energy related applications using a simple and cost-effective chemical bath deposition (CBD) technique. Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through CBD method using a simple seeding technique. This seeding process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ~45 nm and lengths of 1–1.3 μm, with an optical band gap of ~3.61 eV. The NWs growth was successfully achieved on various substrates (e.g silicon dioxide, plastic sheets, copper grid, and carbon nanotube buckypaper). The as-prepared ZnO NWs were found to be photoactive under ultra violet (UV) illumination. UV photosensor devices fabricated using these NW assemblies demonstrated a high photodetection abilities at room temperature under moderate UV illumination power of ~ 250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the same seeding method, for various opto-electronic applications. The same seeding technique was also used to grow ZnO NWs onto aligned multi-wall carbon nanotubes (MWCNTs), which were synthesized by using air assisted chemical vapor deposition (CVD) onto a SiO2/Si substrate. This ZnO NW/MWCNT hybrid structure was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The fabricated structure was used as an electrode for supercapacitor (SC) measurements. Good electrochemical performance was accomplished with a specific capacitance of ~192 F/g along with a maximum energy density of ~3.8Wh/kg and a high power density of ~ 28 kW/kg. The fabricated device showed high stability and it retained over 99% of its initial specific capacitance value after 2000 cycles. In addition, we report on the synthesis & electrochemical characterization of two-dimensional Zinc-Aluminum (ZnAl) layered double hydroxides (LDHs) directly grown on Al substrate by using CBD method. After details structural characterization by SEM, Raman spectroscopy, EDS elemental mapping, and X-ray powder diffraction (XRD), the electrochemical performances of an electrode fabricated based on this material were evaluated via cyclic voltammetry and galvanostatic charge-discharge using various electrolytes. The ionic electrolyte device showed a maximum specific capacitance of 120 F/g along with a maximum energy density of 5.17 Wh/Kg and a high power density of 8.4 kW/h. Additionally, we found that a high specific capacitance value of 358 F/g was achieved using an aqueous electrolyte.

Zinc Oxide Nanostructures: Synthesis and Characterization

Zinc Oxide Nanostructures: Synthesis and Characterization PDF Author: Sotirios Baskoutas
Publisher: MDPI
ISBN: 3038973025
Category : Electronic books
Languages : en
Pages : 303

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials

Carbon and Oxide Nanostructures

Carbon and Oxide Nanostructures PDF Author: Noorhana Yahya
Publisher: Springer Science & Business Media
ISBN: 3642146732
Category : Technology & Engineering
Languages : en
Pages : 413

Get Book Here

Book Description
This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes Synthesis, characterization and application of oxide based nanomaterials. Nanostructured magnetic and electric materials and their applications. Nanostructured materials for petro-chemical industry. Oxide and carbon based thin films for electronics and sustainable energy. Theory, calculations and modeling of nanostructured materials.

Zinc Oxide Based Nano Materials and Devices

Zinc Oxide Based Nano Materials and Devices PDF Author: , Prof. Dr. Ahmed Nahhas
Publisher: BoD – Books on Demand
ISBN: 1789239575
Category : Technology & Engineering
Languages : en
Pages : 148

Get Book Here

Book Description
This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.

Multifunctional Oxide-Based Materials: From Synthesis to Application

Multifunctional Oxide-Based Materials: From Synthesis to Application PDF Author: Teofil Jesionowski
Publisher: MDPI
ISBN: 3039213970
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
The book deals with novel aspects and perspectives in metal oxide and hybrid material fabrication. The contributions are mainly focused on the search for a new group of advanced materials with designed physicochemical properties, especially an expanded porous structure and defined surface activity. The proposed technological procedures result in an enhanced activity of the synthesized hybrid materials, which is of great importance when considering their potential fields of application. The use of such materials in different technological disciplines, including aspects associated with environmental protection, allows for the verification of the proposed synthesis method. Thus, it can be stated that those aspects are of interdisciplinary character and may be located at the interface of three scientific disciplines—chemistry, materials science, and engineering—as well as environmental protection. Furthermore, the presented scientific scope is in some way an answer to the continuous demand for such types of materials and opens new perspectives for their practical use

Zinc-Based Nanostructures for Environmental and Agricultural Applications

Zinc-Based Nanostructures for Environmental and Agricultural Applications PDF Author: Kamel A. Abd-Elsalam
Publisher: Elsevier
ISBN: 0128236566
Category : Technology & Engineering
Languages : en
Pages : 678

Get Book Here

Book Description
Zinc-Based Nanostructures for Environmental and Agricultural Applications shows how zinc nanostructures are being used in agriculture, food and the environment. The book has been divided into two parts: Part I deals with the synthesis and characterization of zinc-based nanostructures such as biogenic, plant, microbial, and actinobacteria mediated synthesis of zinc nanoparticles, Part II is focused on agri-food applications such as antibacterial, antifungal, antimicrobial, plant disease management, controlling post-harvest diseases, pesticide sensing and degradations, plant promotions, ZnO nanostructure for food packaging application, safe animal food and feed supplement, elimination of mycotoxins, and veterinary applications. Part III reviews technological developments in environmental applications such as risks and benefits for aquatic organisms and the marine environment, antiseptic activity and toxicity mechanisms, wastewater treatment, and zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. The book discusses various aspects, including the application of zinc-based nanostructures to enhance plant health and growth, the effect on soil microbial activity, antimicrobial mechanism, phytotoxicity and accumulation in plants, the possible impact of zinc-based nanostructures in the agricultural sector as nanofertilizer, enhancing crop productivity, and other possible antimicrobial mechanisms of ZnO nanomaterials. Explores the impact of a large variety of zinc-based nanostructures on agri-food and environment sectors Outlines how the properties of zinc-based nanostructures mean they are particularly efficient in environmental and agricultural application areas Assesses the major challenges of synthesizing and processing zinc-based nanostructured materials

Nanostructured Zinc Oxide

Nanostructured Zinc Oxide PDF Author: Kamlendra Awasthi
Publisher: Elsevier
ISBN: 0128189010
Category : Technology & Engineering
Languages : en
Pages : 781

Get Book Here

Book Description
Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Synthesis and Characterization of ZnO/Graphene Nanostructures for Electronics and Photocatalysis

Synthesis and Characterization of ZnO/Graphene Nanostructures for Electronics and Photocatalysis PDF Author: Seyed Ebrahim Chalangar
Publisher: Linköping University Electronic Press
ISBN: 9179296823
Category :
Languages : en
Pages : 132

Get Book Here

Book Description
Recent rapid development of electronics and electro-optical devices demands affordable and reliable materials with enhanced performance. Forming nanocomposites of already well-known materials is one possible route towards novel functional materials with desirable synergistic enhanced properties. Incompatible chemical properties, mismatched crystal structures and weak bonding interactions between the substances, however, often limit the number of possible nanocomposites. Moreover, using an inexpensive, facile, large-area and flexible fabrication technique is crucial to employ the new composites in industrially viable applications. This thesis focuses on the synthesis and characterization of different zinc oxide/graphene (ZnO/GR) nanocomposites, well suited for optoelectronics and photocatalysis applications. Two different approaches of i) substrate-free random synthesis, and ii) template-assisted selective area synthesis were studied in detail. In the first approach, ZnO nanoparticles/rods were grown on GR. The obtained nanocomposites were investigated for better GR dispersity, electrical conductivity and optical properties. Besides, by adding silver iodide to the nanocomposite, an enhanced plasmonic solar-driven photocatalyst was synthesized and analyzed. In the second approach, arrays of single, vertically aligned ZnO nanorods were synthesized using a colloidal lithography-patterned sol-gel ZnO seed layer. Our demonstrated nanofabrication technique with simple, substrate independent, and large wafer-scale area compatibility improved the alignment and surface density of ZnO nanorods over large selective growth areas. Eventually, we found a novel method to further enhance the vertical alignment of the ZnO nanorods by introducing a GR buffer layer between the Si substrate and the ZnO seed layer, together with the mentioned patterning technique. The synthesized nanocomposites were analyzed using a large variety of experimental techniques including electron microscopy, photoelectron spectroscopy, x-ray diffraction, photoluminescence and cathodoluminescence spectroscopy for in-depth studies of their morphology, chemical and optical properties. Our findings show that the designed ZnO/GR nanocomposites with vertically aligned ZnO nanorods of high crystalline quality, synthesized with the developed low-cost nanofabrication technique, can lead to novel devices offering higher performance at a significantly lower fabrication cost.

Zinc Oxide Nanostructures: Synthesis and Characterization

Zinc Oxide Nanostructures: Synthesis and Characterization PDF Author: Sotirios Baskoutas
Publisher:
ISBN: 9783038973034
Category :
Languages : en
Pages :

Get Book Here

Book Description
Zinc oxide (ZnO) is a wide band gap semiconductor with an energy gap of 3.37 eV at room temperature. It has been used considerably for its catalytic, electrical, optoelectronic, and photochemical properties. ZnO nanomaterials, such as quantum dots, nanorods, and nanowires, have been intensively investigated for their important properties. Many methods have been described in the literature for the production of ZnO nanostructures, such as laser ablation, hydrothermal methods, electrochemical deposition, sol-gel methods, chemical vapour deposition, molecular beam epitaxy, the common thermal evaporation method, and the soft chemical solution method. The present Special Issue is devoted to the synthesis and characterization of ZnO nanostructures with novel technological applications.

Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells

Synthesis of Zinc Oxide by Sol–Gel Method for Photoelectrochemical Cells PDF Author: Siti Salwa Alias
Publisher: Springer Science & Business Media
ISBN: 9814560774
Category : Technology & Engineering
Languages : en
Pages : 59

Get Book Here

Book Description
This book focuses on the study of synthesized ZnO powder using Zn(CH3COO)2∙2H2O precursor, methanol (as solvent), and sodium hydroxide (NaOH) to vary the pH. The successfully synthesized ZnO powder from the sol-gel centrifugation and sol-gel storage methods were characterized and investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV–visible spectroscopy, and photoluminescence test to compare the properties of the nanoparticles. The best characteristic of the ZnO powder from both methods was observed when the powders were coated on an ITO glass to fabricate a PEC. The current density–voltage performances of both PECs were investigated under luminescent and dark conditions.