The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814

Get Book Here

Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814

Get Book Here

Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

finite element methods

finite element methods PDF Author: Michel Krizek
Publisher: CRC Press
ISBN: 1482277697
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
These proceedings originated from a conference commemorating the 50th anniversary of the publication of Richard Courant's seminal paper, Variational Methods for Problems of Equilibrium and Vibration. These papers address fundamental questions in numerical analysis and the special problems that occur in applying the finite element method to various

Conference on the Numerical Solution of Differential Equations

Conference on the Numerical Solution of Differential Equations PDF Author: G.A. Watson
Publisher: Springer
ISBN: 3540379142
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description


Mathematical Aspects of Finite Element Methods

Mathematical Aspects of Finite Element Methods PDF Author: I. Galligani
Publisher: Springer
ISBN: 3540371583
Category : Mathematics
Languages : en
Pages : 371

Get Book Here

Book Description


Finite Element Concepts

Finite Element Concepts PDF Author: Gautam Dasgupta
Publisher: Springer
ISBN: 1493974238
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig’s isoparametric interpolants and Iron’s patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.

The Finite Element Method and Its Reliability

The Finite Element Method and Its Reliability PDF Author: Ivo Babuška
Publisher: Oxford University Press
ISBN: 9780198502760
Category : Mathematics
Languages : en
Pages : 820

Get Book Here

Book Description
The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.

Navier—Stokes Equations

Navier—Stokes Equations PDF Author: Roger Temam
Publisher: Elsevier
ISBN: 1483256855
Category : Mathematics
Languages : en
Pages : 539

Get Book Here

Book Description
Navier-Stokes Equations: Theory and Numerical Analysis focuses on the processes, methodologies, principles, and approaches involved in Navier-Stokes equations, computational fluid dynamics (CFD), and mathematical analysis to which CFD is grounded. The publication first takes a look at steady-state Stokes equations and steady-state Navier-Stokes equations. Topics include bifurcation theory and non-uniqueness results, discrete inequalities and compactness theorems, existence and uniqueness theorems, discretization of Stokes equations, existence and uniqueness for the Stokes equations, and function spaces. The text then examines the evolution of Navier-Stokes equations, including linear case, compactness theorems, alternate proof of existence by semi-discretization, and discretization of the Navier-Stokes equations. The book ponders on the approximation of the Navier-Stokes equations by the projection and compressibility methods; properties of the curl operator and application to the steady-state Navier-Stokes equations; and implementation of non-conforming linear finite elements. The publication is a valuable reference for researchers interested in the theory and numerical analysis of Navier-Stokes equations.

Numerical Mathematics and Advanced Applications - ENUMATH 2013

Numerical Mathematics and Advanced Applications - ENUMATH 2013 PDF Author: Assyr Abdulle
Publisher: Springer
ISBN: 3319107054
Category : Computers
Languages : en
Pages : 759

Get Book Here

Book Description
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.

Numerical Solution of Partial Differential Equations—III, SYNSPADE 1975

Numerical Solution of Partial Differential Equations—III, SYNSPADE 1975 PDF Author: Bert Hubbard
Publisher: Academic Press
ISBN: 1483262367
Category : Mathematics
Languages : en
Pages : 510

Get Book Here

Book Description
Numerical Solution of Partial Differential Equations—III: Synspade 1975 provides information pertinent to those difficult problems in partial differential equations exhibiting some type of singular behavior. This book covers a variety of topics, including the mathematical models and their relation to experiment as well as the behavior of solutions of the partial differential equations involved. Organized into 16 chapters, this book begins with an overview of elastodynamic results for stress intensity factors of a bifurcating crack. This text then discusses the effects of nonlinearities, such as bifurcation, which occur in problems of nonlinear mechanics. Other chapters consider the equations of changing type and those with rapidly oscillating coefficients. This book discusses as well the effective computational methods for numerical solutions. The final chapter deals with the principal results on G-convergence, such as the convergence of the Green's operators for Dirichlet's and other boundary problems. This book is a valuable resource for engineers and mathematicians.

Finite Elements II

Finite Elements II PDF Author: Alexandre Ern
Publisher: Springer Nature
ISBN: 3030569233
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
This book is the second volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume II is divided into 32 chapters plus one appendix. The first part of the volume focuses on the approximation of elliptic and mixed PDEs, beginning with fundamental results on well-posed weak formulations and their approximation by the Galerkin method. The material covered includes key results such as the BNB theorem based on inf-sup conditions, Céa's and Strang's lemmas, and the duality argument by Aubin and Nitsche. Important implementation aspects regarding quadratures, linear algebra, and assembling are also covered. The remainder of Volume II focuses on PDEs where a coercivity property is available. It investigates conforming and nonconforming approximation techniques (Galerkin, boundary penalty, Crouzeix—Raviart, discontinuous Galerkin, hybrid high-order methods). These techniques are applied to elliptic PDEs (diffusion, elasticity, the Helmholtz problem, Maxwell's equations), eigenvalue problems for elliptic PDEs, and PDEs in mixed form (Darcy and Stokes flows). Finally, the appendix addresses fundamental results on the surjectivity, bijectivity, and coercivity of linear operators in Banach spaces.