Author: Gabor Kunstatter
Publisher: Springer Nature
ISBN: 3030554201
Category : Science
Languages : en
Pages : 410
Book Description
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
A First Course on Symmetry, Special Relativity and Quantum Mechanics
Author: Gabor Kunstatter
Publisher: Springer Nature
ISBN: 3030554201
Category : Science
Languages : en
Pages : 410
Book Description
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Publisher: Springer Nature
ISBN: 3030554201
Category : Science
Languages : en
Pages : 410
Book Description
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Relativity, Groups, Particles
Author: Roman U. Sexl
Publisher: Springer Science & Business Media
ISBN: 3709162343
Category : Science
Languages : en
Pages : 388
Book Description
This textbook bridges the gap between the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory. After explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - illustrated by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to the conceptual clarification.
Publisher: Springer Science & Business Media
ISBN: 3709162343
Category : Science
Languages : en
Pages : 388
Book Description
This textbook bridges the gap between the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory. After explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - illustrated by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to the conceptual clarification.
Einstein's Relativity and Beyond
Author: Jong-Ping Hsu
Publisher: World Scientific
ISBN: 9789812813480
Category : Science
Languages : en
Pages : 450
Book Description
The purposes of this book are (1) to explore and expound relativity physics and four-dimensional symmetry from the logically simplest viewpoint by making one single postulate instead of two; and (2) to indicate the simplest generalization of the Lorentz transformation in order to cope with frames with constant linear acceleration.
Publisher: World Scientific
ISBN: 9789812813480
Category : Science
Languages : en
Pages : 450
Book Description
The purposes of this book are (1) to explore and expound relativity physics and four-dimensional symmetry from the logically simplest viewpoint by making one single postulate instead of two; and (2) to indicate the simplest generalization of the Lorentz transformation in order to cope with frames with constant linear acceleration.
Physics from Symmetry
Author: Jakob Schwichtenberg
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
Symmetry and the Beautiful Universe
Author: Leon M. Lederman
Publisher: Prometheus Books
ISBN: 1615920412
Category : Science
Languages : en
Pages : 363
Book Description
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.
Publisher: Prometheus Books
ISBN: 1615920412
Category : Science
Languages : en
Pages : 363
Book Description
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.
Why Beauty Is Truth
Author: Ian Stewart
Publisher:
ISBN: 0465082378
Category : Mathematics
Languages : en
Pages : 306
Book Description
Physics.
Publisher:
ISBN: 0465082378
Category : Mathematics
Languages : en
Pages : 306
Book Description
Physics.
Classical Measurements in Curved Space-Times
Author: Fernando de Felice
Publisher: Cambridge University Press
ISBN: 1139491598
Category : Science
Languages : en
Pages : 326
Book Description
The theory of relativity describes the laws of physics in a given space-time. However, a physical theory must provide observational predictions expressed in terms of measurements, which are the outcome of practical experiments and observations. Ideal for readers with a mathematical background and a basic knowledge of relativity, this book will help readers understand the physics behind the mathematical formalism of the theory of relativity. It explores the informative power of the theory of relativity, and highlights its uses in space physics, astrophysics and cosmology. Readers are given the tools to pick out from the mathematical formalism those quantities that have physical meaning and which can therefore be the result of a measurement. The book considers the complications that arise through the interpretation of a measurement, which is dependent on the observer who performs it. Specific examples of this are given to highlight the awkwardness of the problem.
Publisher: Cambridge University Press
ISBN: 1139491598
Category : Science
Languages : en
Pages : 326
Book Description
The theory of relativity describes the laws of physics in a given space-time. However, a physical theory must provide observational predictions expressed in terms of measurements, which are the outcome of practical experiments and observations. Ideal for readers with a mathematical background and a basic knowledge of relativity, this book will help readers understand the physics behind the mathematical formalism of the theory of relativity. It explores the informative power of the theory of relativity, and highlights its uses in space physics, astrophysics and cosmology. Readers are given the tools to pick out from the mathematical formalism those quantities that have physical meaning and which can therefore be the result of a measurement. The book considers the complications that arise through the interpretation of a measurement, which is dependent on the observer who performs it. Specific examples of this are given to highlight the awkwardness of the problem.
Symmetry, Structure, and Spacetime
Author: Dean Rickles
Publisher: Elsevier
ISBN: 0444531165
Category : Science
Languages : en
Pages : 243
Book Description
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational structure is what the physics is about. · Unified treatment of gauge symmetries and their relationship to ontology in physics · Brings philosophy of space and time into step with developments in modern physics · Argues against the received view on the implications of symmetries in physics · Provides elementary treatments of technical issues · Illustrates a novel defense of structuralism
Publisher: Elsevier
ISBN: 0444531165
Category : Science
Languages : en
Pages : 243
Book Description
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational structure is what the physics is about. · Unified treatment of gauge symmetries and their relationship to ontology in physics · Brings philosophy of space and time into step with developments in modern physics · Argues against the received view on the implications of symmetries in physics · Provides elementary treatments of technical issues · Illustrates a novel defense of structuralism
Symmetry
Author: Hermann Weyl
Publisher: Princeton University Press
ISBN: 1400874343
Category : Mathematics
Languages : en
Pages : 178
Book Description
Symmetry is a classic study of symmetry in mathematics, the sciences, nature, and art from one of the twentieth century's greatest mathematicians. Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations—as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Publisher: Princeton University Press
ISBN: 1400874343
Category : Mathematics
Languages : en
Pages : 178
Book Description
Symmetry is a classic study of symmetry in mathematics, the sciences, nature, and art from one of the twentieth century's greatest mathematicians. Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations—as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Information—Consciousness—Reality
Author: James B. Glattfelder
Publisher: Springer
ISBN: 3030036332
Category : Science
Languages : en
Pages : 673
Book Description
This open access book chronicles the rise of a new scientific paradigm offering novel insights into the age-old enigmas of existence. Over 300 years ago, the human mind discovered the machine code of reality: mathematics. By utilizing abstract thought systems, humans began to decode the workings of the cosmos. From this understanding, the current scientific paradigm emerged, ultimately discovering the gift of technology. Today, however, our island of knowledge is surrounded by ever longer shores of ignorance. Science appears to have hit a dead end when confronted with the nature of reality and consciousness. In this fascinating and accessible volume, James Glattfelder explores a radical paradigm shift uncovering the ontology of reality. It is found to be information-theoretic and participatory, yielding a computational and programmable universe.
Publisher: Springer
ISBN: 3030036332
Category : Science
Languages : en
Pages : 673
Book Description
This open access book chronicles the rise of a new scientific paradigm offering novel insights into the age-old enigmas of existence. Over 300 years ago, the human mind discovered the machine code of reality: mathematics. By utilizing abstract thought systems, humans began to decode the workings of the cosmos. From this understanding, the current scientific paradigm emerged, ultimately discovering the gift of technology. Today, however, our island of knowledge is surrounded by ever longer shores of ignorance. Science appears to have hit a dead end when confronted with the nature of reality and consciousness. In this fascinating and accessible volume, James Glattfelder explores a radical paradigm shift uncovering the ontology of reality. It is found to be information-theoretic and participatory, yielding a computational and programmable universe.