Symmetry and Pattern in Projective Geometry

Symmetry and Pattern in Projective Geometry PDF Author: Eric Lord
Publisher: Springer Science & Business Media
ISBN: 144714631X
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plücker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of ‘Donald’ Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.

Symmetry and Pattern in Projective Geometry

Symmetry and Pattern in Projective Geometry PDF Author: Eric Lord
Publisher: Springer Science & Business Media
ISBN: 144714631X
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plücker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of ‘Donald’ Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.

Symmetry and Pattern in Projective Geometry

Symmetry and Pattern in Projective Geometry PDF Author: Abby Enger
Publisher:
ISBN: 9781681176499
Category :
Languages : en
Pages : 312

Get Book Here

Book Description
We are all familiar with Euclidean geometry and with the fact that it describes our three dimensional world so well. In Euclidean geometry, the sides of objects have lengths, intersecting lines determine angles between them, and two lines are said to be parallel if they lie in the same plane and never meet. Moreover, these properties do not change when the Euclidean transformations (translation and rotation) are applied. Since Euclidean geometry describes our world so well, it is at first tempting to think that it is the only type of geometry. However, when we consider the imaging process of a camera, it becomes clear that Euclidean geometry is insufficient: Lengths and angles are no longer preserved, and parallel lines may intersect. Euclidean geometry is actually a subset of what is known as projective geometry. Projective geometry exists in any number of dimensions, just like Euclidean geometry. Projective geometry has its origins in the early Italian Renaissance, particularly in the architectural drawings of Filippo Brunelleschi (1377-1446) and Leon Battista Alberti (1404-72), who invented the method of perspective drawing. Projective geometry deals with the relationships between geometric figures and the images, or mappings that result from projecting them onto another surface. Common examples of projections are the shadows cast by opaque objects and motion pictures displayed on a screen.First of all, projective geometry is a jewel of mathematics, one of the outstanding achievements of the nineteenth century, a century of remarkable mathematical achievements such as non-Euclidean geometry, abstract algebra, and the foundations of calculus. Projective geometry is as much a part of a general education in mathematics as differential equations and Galois theory. Moreover, projective geometry is a prerequisite for algebraic geometry, one of today's most vigorous and exciting branches of mathematics. Secondly, for more than fifty years projective geometry has been propelled in a new direction by its combinatorial connections. The challenge of describing a classical geometric structure by its parameters - properties that at first glance might seem superficial - provided much of the impetus for finite geometry, another of today's flourishing branches of mathematics.

Computational Symmetry in Computer Vision and Computer Graphics

Computational Symmetry in Computer Vision and Computer Graphics PDF Author: Yanxi Liu
Publisher: Now Publishers Inc
ISBN: 1601983646
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago by the first author, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. The recent resurging interests in computational symmetry for computer vision and computer graphics applications have shown promising results. Recognizing the fundamental relevance and potential power that computational symmetry affords, we offer this survey to the computer vision and computer graphics communities. This survey provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision PDF Author: Richard Hartley
Publisher: Cambridge University Press
ISBN: 1139449141
Category : Computers
Languages : en
Pages : 676

Get Book Here

Book Description
A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Cognitive Governance and the Historical Distortion of the Norm of Modern Development: A Theory of Political Asymmetry

Cognitive Governance and the Historical Distortion of the Norm of Modern Development: A Theory of Political Asymmetry PDF Author: Rueda, Renny
Publisher: IGI Global
ISBN: 1668497964
Category : Business & Economics
Languages : en
Pages : 272

Get Book Here

Book Description
In the world of academic scholarship, there exists a pressing problem that has long confounded researchers and scholars alike. The issue at hand is the glaring gap in our understanding of political asymmetry—an elusive concept that holds the key to deciphering how institutions evolve and influence normative constructs within contemporary governance structures. Despite its undeniable relevance, political asymmetry has remained a neglected subject in social science discourse. This omission hampers our capacity to explore the intricate interplay between cultural diversity, normative representations, and political dynamics. As such, a critical void persists in comprehending the complex mechanisms that underpin governance practices in our ever-evolving global landscape. Cognitive Governance and the Historical Distortion of the Norm of Modern Development: A Theory of Political Asymmetry offers an illuminating solution to this enduring problem. This pioneering work presents a comprehensive and meticulously crafted exploration of the concept of political asymmetry, providing both a theoretical taxonomy and an empirical roadmap for scholars eager to delve into uncharted territory. By bridging this knowledge gap, the book equips researchers with the tools needed to redefine how political asymmetry is not only understood but also applied in rigorous social science research. It marks a transformative shift in our approach to political science, enabling us to navigate the labyrinth of contemporary governance structures with newfound clarity.

Classical Geometry

Classical Geometry PDF Author: I. E. Leonard
Publisher: John Wiley & Sons
ISBN: 1118679148
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.

General Galois Geometries

General Galois Geometries PDF Author: James Hirschfeld
Publisher: Springer
ISBN: 1447167902
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.

Perspective and Projective Geometry

Perspective and Projective Geometry PDF Author: Annalisa Crannell
Publisher: Princeton University Press
ISBN: 0691197385
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Through a unique approach combining art and mathematics, Perspective and Projective Geometry introduces students to the ways that projective geometry applies to perspective art. Geometry, like mathematics as a whole, offers a useful and meaningful lens for understanding the visual world. Exploring pencil-and-paper drawings, photographs, Renaissance paintings, and GeoGebra constructions, this textbook equips students with the geometric tools for projecting a three-dimensional scene onto two dimensions. Organized as a series of exercise modules, this book teaches students through hands-on inquiry and participation. Each lesson begins with a visual puzzle that can be investigated through geometry, followed by exercises that reinforce new concepts and hone students’ analytical abilities. An electronic instructor’s manual available to teachers contains sample syllabi and advice, including suggestions for pacing and grading rubrics for art projects. Drawing vital interdisciplinary connections between art and mathematics, Perspective and Projective Geometry is ideally suited for undergraduate students interested in mathematics or computer graphics, as well as for mathematically inclined students of architecture or art. · Features computer-based GeoGebra modules and hands-on exercises · Contains ample visual examples, math and art puzzles, and proofs with real-world applications · Suitable for college students majoring in mathematics, computer science, and art · Electronic instructor’s manual (available only to teachers)

A Course in Modern Geometries

A Course in Modern Geometries PDF Author: Judith N. Cederberg
Publisher: Springer Science & Business Media
ISBN: 1475734905
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. The first chapter presents several finite geometries in an axiomatic framework, while Chapter 2 continues the synthetic approach in introducing both Euclids and ideas of non-Euclidean geometry. There follows a new introduction to symmetry and hands-on explorations of isometries that precedes an extensive analytic treatment of similarities and affinities. Chapter 4 presents plane projective geometry both synthetically and analytically, and the new Chapter 5 uses a descriptive and exploratory approach to introduce chaos theory and fractal geometry, stressing the self-similarity of fractals and their generation by transformations from Chapter 3. Throughout, each chapter includes a list of suggested resources for applications or related topics in areas such as art and history, plus this second edition points to Web locations of author-developed guides for dynamic software explorations of the Poincaré model, isometries, projectivities, conics and fractals. Parallel versions are available for "Cabri Geometry" and "Geometers Sketchpad".

What Number Is God?

What Number Is God? PDF Author: Sarah Voss
Publisher: SUNY Press
ISBN: 9780791424179
Category : Philosophy
Languages : en
Pages : 236

Get Book Here

Book Description
This book uses modern mathematical metaphors to better understand religion and philosophy.