Symmetric Functions and Combinatorial Operators on Polynomials

Symmetric Functions and Combinatorial Operators on Polynomials PDF Author: Alain Lascoux
Publisher: American Mathematical Soc.
ISBN: 0821828711
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.

Symmetric Functions and Combinatorial Operators on Polynomials

Symmetric Functions and Combinatorial Operators on Polynomials PDF Author: Alain Lascoux
Publisher: American Mathematical Soc.
ISBN: 0821828711
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.

Current Trends in Symmetric Polynomials with Their Applications Ⅱ

Current Trends in Symmetric Polynomials with Their Applications Ⅱ PDF Author: Taekyun Kim
Publisher: MDPI
ISBN: 3036503609
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
The special issue contains research papers with various topics in many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theory, methods, and their application based on current and recent developing symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and contains the most recent advances made in the area of symmetric functions and polynomials.

Symmetric Functions and Hall Polynomials

Symmetric Functions and Hall Polynomials PDF Author: Ian Grant Macdonald
Publisher: Oxford University Press
ISBN: 9780198504504
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics PDF Author: James Haglund
Publisher: American Mathematical Soc.
ISBN: 0821844113
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.

Special Functions

Special Functions PDF Author: George E. Andrews
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.

Unitary Symmetry and Combinatorics

Unitary Symmetry and Combinatorics PDF Author: James D. Louck
Publisher: World Scientific
ISBN: 9812814728
Category : Science
Languages : en
Pages : 642

Get Book Here

Book Description
Notation -- Quantum angular momentum -- Composite systems -- Graphs and adjacency diagrams -- Generating functions -- The D[lambda] polynomials: form -- Operator actions in Hilbert space -- The D[lambda] polynomials: structure -- The general linear and unitary groups -- Tensor operator theory -- Compendium A. Basic algebraic objects -- Compendium B. Combinatorial objects.

Affine Hecke Algebras and Orthogonal Polynomials

Affine Hecke Algebras and Orthogonal Polynomials PDF Author: I. G. Macdonald
Publisher: Cambridge University Press
ISBN: 9780521824729
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.

Algebra and Applications 2

Algebra and Applications 2 PDF Author: Abdenacer Makhlouf
Publisher: John Wiley & Sons
ISBN: 1789450187
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored. Algebra and Applications 2 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebraic Combinatorics and Coinvariant Spaces

Algebraic Combinatorics and Coinvariant Spaces PDF Author: Francois Bergeron
Publisher: CRC Press
ISBN: 1439865078
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and

An Introduction to Symmetric Functions and Their Combinatorics

An Introduction to Symmetric Functions and Their Combinatorics PDF Author: Eric S. Egge
Publisher: American Mathematical Soc.
ISBN: 1470448998
Category : Education
Languages : en
Pages : 359

Get Book Here

Book Description
This book is a reader-friendly introduction to the theory of symmetric functions, and it includes fundamental topics such as the monomial, elementary, homogeneous, and Schur function bases; the skew Schur functions; the Jacobi–Trudi identities; the involution ω ω; the Hall inner product; Cauchy's formula; the RSK correspondence and how to implement it with both insertion and growth diagrams; the Pieri rules; the Murnaghan–Nakayama rule; Knuth equivalence; jeu de taquin; and the Littlewood–Richardson rule. The book also includes glimpses of recent developments and active areas of research, including Grothendieck polynomials, dual stable Grothendieck polynomials, Stanley's chromatic symmetric function, and Stanley's chromatic tree conjecture. Written in a conversational style, the book contains many motivating and illustrative examples. Whenever possible it takes a combinatorial approach, using bijections, involutions, and combinatorial ideas to prove algebraic results. The prerequisites for this book are minimal—familiarity with linear algebra, partitions, and generating functions is all one needs to get started. This makes the book accessible to a wide array of undergraduates interested in combinatorics.