Analysing Survival Data from Clinical Trials and Observational Studies

Analysing Survival Data from Clinical Trials and Observational Studies PDF Author: Ettore Marubini
Publisher: John Wiley & Sons
ISBN: 9780470093412
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
A practical guide to methods of survival analysis for medical researchers with limited statistical experience. Methods and techniques described range from descriptive and exploratory analysis to multivariate regression methods. Uses illustrative data from actual clinical trials and observational studies to describe methods of analysing and reporting results. Also reviews the features and performance of statistical software available for applying the methods of analysis discussed.

Analysing Survival Data from Clinical Trials and Observational Studies

Analysing Survival Data from Clinical Trials and Observational Studies PDF Author: Ettore Marubini
Publisher: John Wiley & Sons
ISBN: 9780470093412
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
A practical guide to methods of survival analysis for medical researchers with limited statistical experience. Methods and techniques described range from descriptive and exploratory analysis to multivariate regression methods. Uses illustrative data from actual clinical trials and observational studies to describe methods of analysing and reporting results. Also reviews the features and performance of statistical software available for applying the methods of analysis discussed.

Survival Analysis in Medicine and Genetics

Survival Analysis in Medicine and Genetics PDF Author: Jialiang Li
Publisher: CRC Press
ISBN: 1439893144
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description
Using real data sets throughout, this text introduces the latest methods for analyzing high-dimensional survival data. With an emphasis on the applications of survival analysis techniques in genetics, it presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. The book reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.

Handbook of Survival Analysis

Handbook of Survival Analysis PDF Author: John P. Klein
Publisher: CRC Press
ISBN: 146655567X
Category : Mathematics
Languages : en
Pages : 635

Get Book Here

Book Description
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Survival Analysis

Survival Analysis PDF Author: David G. Kleinbaum
Publisher: Springer Science & Business Media
ISBN: 1475725558
Category : Medical
Languages : en
Pages : 332

Get Book Here

Book Description
A straightforward and easy-to-follow introduction to the main concepts and techniques of the subject. It is based on numerous courses given by the author to students and researchers in the health sciences and is written with such readers in mind. A "user-friendly" layout includes numerous illustrations and exercises and the book is written in such a way so as to enable readers learn directly without the assistance of a classroom instructor. Throughout, there is an emphasis on presenting each new topic backed by real examples of a survival analysis investigation, followed up with thorough analyses of real data sets. Each chapter concludes with practice exercises to help readers reinforce their understanding of the concepts covered, before going on to a more comprehensive test. Answers to both are included. Readers will enjoy David Kleinbaums style of presentation, making this an excellent introduction for all those coming to the subject for the first time.

SAS Survival Analysis Techniques for Medical Research

SAS Survival Analysis Techniques for Medical Research PDF Author: Alan B. Cantor
Publisher: SAS Press
ISBN: 9781590471357
Category : Medical statistic
Languages : en
Pages : 0

Get Book Here

Book Description
If you are new to survival analysis or want to expand your capabilities in this area, you'll benefit from Alan Cantor's SAS Survival Analysis Techniques for Medical Research, Second Edition, which presents the theory and methods of survival analysis along with excellent discussions of the SAS procedures used to implement the methods described. New features of the second edition include a discussion of permutation and randomization tests; a discussion of the use of data imputation; an expanded discussion of power for Cox regression; descriptions of the new features of SAS 9, such as confidence bands for the Kaplan-Meier curve; appendixes that cover mathematical and statistical background topics needed in survival analysis; and student exercises. The new features, along with several useful macros and numerous examples, make this a suitable textbook for a course in survival analysis for biostatistics majors and majors in related fields. This book excels at presenting complex ideas in a way that enables those without a strong technical background to understand and apply the concepts and techniques.

Analysis of Survival Data

Analysis of Survival Data PDF Author: D.R. Cox
Publisher: CRC Press
ISBN: 9780412244902
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
This monograph contains many ideas on the analysis of survival data to present a comprehensive account of the field. The value of survival analysis is not confined to medical statistics, where the benefit of the analysis of data on such factors as life expectancy and duration of periods of freedom from symptoms of a disease as related to a treatment applied individual histories and so on, is obvious. The techniques also find important applications in industrial life testing and a range of subjects from physics to econometrics. In the eleven chapters of the book the methods and applications of are discussed and illustrated by examples.

Bayesian Survival Analysis

Bayesian Survival Analysis PDF Author: Joseph G. Ibrahim
Publisher: Springer Science & Business Media
ISBN: 1475734476
Category : Medical
Languages : en
Pages : 494

Get Book Here

Book Description
Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Survival Analysis with Correlated Endpoints

Survival Analysis with Correlated Endpoints PDF Author: Takeshi Emura
Publisher: Springer
ISBN: 9811335168
Category : Medical
Languages : en
Pages : 126

Get Book Here

Book Description
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.

Modelling Survival Data in Medical Research

Modelling Survival Data in Medical Research PDF Author: David Collett
Publisher:
ISBN: 9780429258374
Category : Clinical trials
Languages : en
Pages : 368

Get Book Here

Book Description
Data collected on the time to an event-such as the death of a patient in a medical study-is known as survival data. The methods for analyzing survival data can also be used to analyze data on the time to events such as the recurrence of a disease or relief from symptoms. Modelling Survival Data in Medical Research begins with an introduction to survival analysis and a description of four studies in which survival data was obtained. These and other data sets are then used to illustrate the techniques presented in the following chapters, including the Cox and Weibull proportional hazards models; accelerated failure time models; models with time-dependent variables; interval-censored survival data; model checking; and use of statistical packages. Designed for statisticians in the pharmaceutical industry and medical research institutes, and for numerate scientists and clinicians analyzing their own data sets, this book also meets the need for an intermediate text which emphasizes the application of the methodology to survival data arising from medical studies.

Small Clinical Trials

Small Clinical Trials PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221

Get Book Here

Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.